Finite-size scaling of the Glauber model of critical dynamics

被引:39
|
作者
Luscombe, JH
Luban, M
Reynolds, JP
机构
[1] IOWA STATE UNIV SCI & TECHNOL,AMES LAB,AMES,IA 50011
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT PHYS & ASTRON,AMES,IA 50011
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevE.53.5852
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain the exact critical relaxation time tau(L)(xi), where xi is the bulk correlation length, for the Glauber kinetic Ising model of spins on a one-dimensional lattice of finite length L for both periodic and free boundary conditions (BC's). We show that, independent of the BC's, the dynamic critical exponent has the well-known value z=2, and we comment on a recent claim that z=1 for this model. The ratio tau(L)(xi)/tau(infinity)(xi), in the double limit L,xi-->infinity for fixed x=L/xi, approaches a limiting functional form, f(tau)(L/xi), the finite-size scaling function. For free BC's we derive the exact scaling function f(tau)(x) = [1+(omega(x)/(x)(2)](-1), where omega(x) is the smallest root of the transcendental equation omega tan(omega/2)=x. We provide expansions of omega(x) in powers of x and x(-1) for the regimes of small and large x, respectively, and establish their radii of convergence. The scaling function shows anomalous behavior at small x, f(tau)(x)approximate to x, instead of the usual f(tau)(x)approximate to x(z), as x-->O. This is because, even for finite L, the lifetime of the slowest dynamical mode diverges for T-->0 K. For periodic BC's, with the exception of one system, sigma(L) is independent of L, and hence f(tau)=1. The exceptional system, that with an odd number of spins and antiferromagnetic couplings, exhibits frustration at T=O K, and the scaling function is given by f(tau)(x)=[1+(pi/x)(2)](-1).
引用
收藏
页码:5852 / 5860
页数:9
相关论文
共 50 条
  • [21] Analysis of the finite-size effect of the long-range Ising model under Glauber dynamics
    Komatsu, Hisato
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (03):
  • [22] Finite-size scaling exponents in the Dicke model
    Vidal, J.
    Dusuel, S.
    EUROPHYSICS LETTERS, 2006, 74 (05): : 817 - 822
  • [23] ON THE FINITE-SIZE SCALING EQUATION FOR THE SPHERICAL MODEL
    BRANKOV, JG
    TONCHEV, NS
    JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) : 143 - 159
  • [24] Finite-size scaling analysis of the critical behavior of the Baxter-Wu model
    Martinos, SS
    Malakis, A
    Hadjiagapiou, I
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 352 (2-4) : 447 - 458
  • [25] Finite-size scaling above the upper critical dimension
    Wittmann, Matthew
    Young, A. P.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [26] Finite-size scaling of the Kuramoto model at criticality
    Park, Su-Chan
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [27] Finite-size correlation length and violations of finite-size scaling
    S. Caracciolo
    A. Gambassi
    M. Gubinelli
    A. Pelissetto
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 (2): : 255 - 265
  • [28] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02) : 255 - 265
  • [29] Critical finite-size scaling with constraints: Fisher renormalization revisited
    Krech, M
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XII, 2000, 85 : 71 - 85
  • [30] Critical-point finite-size scaling in the microcanonical ensemble
    Bruce, AD
    Wilding, NB
    PHYSICAL REVIEW E, 1999, 60 (04): : 3748 - 3760