Finite-size scaling of the Glauber model of critical dynamics

被引:39
|
作者
Luscombe, JH
Luban, M
Reynolds, JP
机构
[1] IOWA STATE UNIV SCI & TECHNOL,AMES LAB,AMES,IA 50011
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT PHYS & ASTRON,AMES,IA 50011
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 06期
关键词
D O I
10.1103/PhysRevE.53.5852
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain the exact critical relaxation time tau(L)(xi), where xi is the bulk correlation length, for the Glauber kinetic Ising model of spins on a one-dimensional lattice of finite length L for both periodic and free boundary conditions (BC's). We show that, independent of the BC's, the dynamic critical exponent has the well-known value z=2, and we comment on a recent claim that z=1 for this model. The ratio tau(L)(xi)/tau(infinity)(xi), in the double limit L,xi-->infinity for fixed x=L/xi, approaches a limiting functional form, f(tau)(L/xi), the finite-size scaling function. For free BC's we derive the exact scaling function f(tau)(x) = [1+(omega(x)/(x)(2)](-1), where omega(x) is the smallest root of the transcendental equation omega tan(omega/2)=x. We provide expansions of omega(x) in powers of x and x(-1) for the regimes of small and large x, respectively, and establish their radii of convergence. The scaling function shows anomalous behavior at small x, f(tau)(x)approximate to x, instead of the usual f(tau)(x)approximate to x(z), as x-->O. This is because, even for finite L, the lifetime of the slowest dynamical mode diverges for T-->0 K. For periodic BC's, with the exception of one system, sigma(L) is independent of L, and hence f(tau)=1. The exceptional system, that with an odd number of spins and antiferromagnetic couplings, exhibits frustration at T=O K, and the scaling function is given by f(tau)(x)=[1+(pi/x)(2)](-1).
引用
收藏
页码:5852 / 5860
页数:9
相关论文
共 50 条
  • [1] Finite-Size Scaling in the Ageing Dynamics of the 1D Glauber-Ising Model
    Henkel, Malte
    ENTROPY, 2025, 27 (02)
  • [2] Critical dynamics in a binary fluid: Simulations and finite-size scaling
    Das, Subir K.
    Fisher, Michael E.
    Sengers, Jan V.
    Horbach, Juergen
    Binder, Kurt
    PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [3] Finite-size scaling of critical avalanches
    Yadav, Avinash Chand
    Quadir, Abdul
    Jafri, Haider Hasan
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [4] FINITE-SIZE SCALING FOR CRITICAL FILMS
    KRECH, M
    DIETRICH, S
    PHYSICAL REVIEW LETTERS, 1991, 66 (03) : 345 - 348
  • [5] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [6] Finite-size scaling and critical exponents of the real antiferromagnetic model
    Murtazaev, AK
    Kamilov, IK
    Aliev, KH
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 204 (1-2) : 151 - 158
  • [7] Finite-size scaling and critical exponents in critical relaxation
    Li, ZB
    Schulke, L
    Zheng, B
    PHYSICAL REVIEW E, 1996, 53 (03): : 2940 - 2948
  • [8] ON THE FINITE-SIZE SCALING IN QUANTUM CRITICAL PHENOMENA
    TONCHEV, NS
    PHYSICA A, 1991, 171 (02): : 374 - 383
  • [9] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667
  • [10] Finite-size scaling of the quasispecies model
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (2-B):