A passive 12-pulse rectifier system, a two-level, and a three-level active three-phase pulsewidth-modulation (PWM) rectifier system are analyzed for supplying the dc-voltage link of a 5-kW variable-speed hydraulic pump drive of an electro-hydrostatic actuator to be employed in future More Electric Aircraft. Weight, volume, and efficiency of the concepts are compared for an input phase voltage range of 98-132 V and an input frequency range of 400-800 Hz. The 12-pulse system shows advantages concerning volume, efficiency, and complexity but is characterized by a high system weight. Accordingly, the three-level PWM rectifier is identified as the most advantageous solution. Finally, a novel extension of the 12-pulse rectifier system by turn-off power semiconductors is proposed which allows a control of the output voltage and, therefore, eliminates the dependency on the mains and load condition which constitutes a main drawback of the passive concept.