An asymmetric Putnam-Fuglede theorem for unbounded operators

被引:19
作者
Stochel, J [1 ]
机构
[1] Jagiellonian Univ, Inst Matemat, Krakow, Poland
关键词
normal operator; subnormal operator; hyponormal operator; intertwining relation;
D O I
10.1090/S0002-9939-01-06127-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The intertwining relations between cosubnormal and closed hyponormal (resp. cohyponormal and closed subnormal) operators are studied. In particular, an asymmetric Putnam-Fuglede theorem for unbounded operators is proved.
引用
收藏
页码:2261 / 2271
页数:11
相关论文
共 21 条
[1]  
Clancey K., 1979, LECT NOTES MATH, V742
[4]   ON UNBOUNDED HYPONORMAL-OPERATORS .3. [J].
JANAS, J .
STUDIA MATHEMATICA, 1994, 112 (01) :75-82
[5]   ON UNBOUNDED HYPONORMAL-OPERATORS II [J].
JANAS, J .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (03) :470-478
[6]   ON UNBOUNDED HYPONORMAL-OPERATORS [J].
JANAS, J .
ARKIV FOR MATEMATIK, 1989, 27 (02) :273-281
[7]  
Jin K. H., 1993, B KOREAN MATH SOC, V30, P65
[8]   A NOTE ON INTERTWINING M-HYPONORMAL OPERATORS [J].
MOORE, RL ;
ROGERS, DD ;
TRENT, TT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (03) :514-516
[9]  
OTA S, 1995, STUD MATH, V112, P279
[10]   ON SOME CLASSES OF UNBOUNDED OPERATORS [J].
OTA, S ;
SCHMUDGEN, K .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1989, 12 (02) :211-226