Impulsive surfaces on dynamical systems

被引:5
作者
Bonotto, E. M. [1 ]
Bortolan, M. C. [2 ]
Caraballo, T. [3 ]
Collegari, R. [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Campus Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Santa Catarina, Dept Matemat, Campus Trindade, BR-88040900 Florianopolis, SC, Brazil
[3] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Apdo Correos 1160, Seville 41080, Spain
基金
巴西圣保罗研究基金会;
关键词
impulsive set; hypersurface; dynamical system; SEMIDYNAMICAL SYSTEMS; ATTRACTORS; STABILITY;
D O I
10.1007/s10474-016-0631-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is devoted to the construction of impulsive sets in . In the literature, there are many examples of impulsive dynamical systems whose impulsive sets are chosen in an abstract way, and in this paper we present sufficient conditions to characterize impulsive sets in which satisfy some "tube conditions" and ensure a good behavior of the flow. Moreover, we present some examples to illustrate the theoretical results.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 15 条
  • [1] [Anonymous], 1976, DIFFERENTIAL TOPOLOG
  • [2] [Anonymous], 1989, Series in Modern Applied Mathematics
  • [3] Flows of characteristic 0+ in impulsive semidynamical systems
    Bonotto, E. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) : 81 - 96
  • [4] Global attractors for impulsive dynamical systems - a precompact approach
    Bonotto, E. M.
    Bortolan, M. C.
    Carvalho, A. N.
    Czaja, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) : 2602 - 2625
  • [5] Uniform attractors of discontinuous semidynamical systems
    Bonotto, E. M.
    Ferreira, J. C.
    [J]. COLLECTANEA MATHEMATICA, 2014, 65 (01) : 47 - 59
  • [6] Topological conjugation and asymptotic stability in impulsive semidynamical systems
    Bonotto, E. M.
    Federson, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 869 - 881
  • [7] Optimal Control of Trading Algorithms: A General Impulse Control Approach
    Bouchard, Bruno
    Ngoc-Minh Dang
    Lehalle, Charles-Albert
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 404 - 438
  • [8] Periodic solutions of nonlinear impulsive differential inclusions with constraints
    Cardinali, T
    Servadei, R
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) : 2339 - 2349
  • [9] Ciesielski K., 2004, Bulletin of the Polish Academy of Sciences, Technical Sciences, V52, P81, DOI 10.4064/ba52-1-9
  • [10] Ciesielski K., 2004, Bulletin of the Polish Academy of Sciences, Technical Sciences, V52, P71, DOI 10.4064/ba52-1-8