A split step approach for the 3-D Maxwell's equations

被引:164
作者
Lee, JW
Fornberg, B
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Univ Colorado, Dept Appl Math, UCB 526, Boulder, CO 80309 USA
关键词
FDTD; Maxwell's equations; split-step;
D O I
10.1016/S0377-0427(03)00484-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Split-step procedures have previously been used successfully in a number of situations, e.g. for Hamiltonian systems, such as certain nonlinear wave equations. In this study, we note that one particular way to write the 3-D Maxwell's equations separates these into two parts, requiring only the solution of six uncoupled 1-D wave equations. The approach allows arbitrary orders of accuracy in both time and space, and features in many cases unconditional stability. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:485 / 505
页数:21
相关论文
共 18 条
[1]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[2]   A fast spectral algorithm for nonlinear wave equations with linear dispersion [J].
Fornberg, B ;
Driscoll, TA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) :456-467
[3]  
Fornberg B., 1996, A Practical Guide to Pseudospectral Methods
[4]  
LEE J, UNPUB J COMPUT APPL
[5]   SYMPLECTIC INTEGRATION OF HAMILTONIAN WAVE-EQUATIONS [J].
MCLACHLAN, R .
NUMERISCHE MATHEMATIK, 1994, 66 (04) :465-492
[6]   A new FDTD algorithm based on alternating-direction implicit method [J].
Namiki, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (10) :2003-2007
[7]  
Neri F., 1987, Lie algebras and canonical integration
[8]   CANONICAL RUNGE-KUTTA-NYSTROM METHODS OF ORDER-5 AND ORDER-6 [J].
OKUNBOR, DI ;
SKEEL, RD .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 51 (03) :375-382
[9]  
Pereyra V., 1967, SIAM Journal on Numerical Analysis, V4, P508, DOI 10.1137/0704046