ON THE CONVERGENCE RATE OF THE INEXACT LEVENBERG-MARQUARDT METHOD

被引:18
作者
Fan, Jinyan [1 ]
Pan, Jianyu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
Nonlinear equations; inexact Levenberg-Marquardt method; local error bound condition; convergence rate;
D O I
10.3934/jimo.2011.7.199
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we study the convergence rate of the inexact Levenberg-Marquardt method for nonlinear equations. Under the local error bound condition which is weaker than nonsingularity, we derive an explicit formula of the convergence order of the inexact LM method, which is a continuous function with respect to not only the LM parameter but also the perturbation vector. The new formula includes many convergence rate results in the literature as its special cases.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 2001, COMPUTING SUPPLEMENT, DOI DOI 10.1007/978-3-7091-6217-0
[2]  
Dai Y. H., 2000, Nonlinear Conjugate Gradient Methods
[3]   Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions [J].
Dan, H ;
Yamashita, N ;
Fukushima, M .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (04) :605-626
[4]   A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems [J].
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1997, 76 (03) :493-512
[5]   On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J].
Fan, JY ;
Yuan, YX .
COMPUTING, 2005, 74 (01) :23-39
[6]   Inexact Levenberg-Marquardt method for nonlinear equations [J].
Fan, JY ;
Pan, JY .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04) :1223-1232
[7]   On the inexactness level of robust Levenberg-Marquardt methods [J].
Fischer, A. ;
Shukla, P. K. ;
Wang, M. .
OPTIMIZATION, 2010, 59 (02) :273-287
[8]  
Levenberg K, 1944, Q Appl Math, V2, P164, DOI [10.1090/QAM/10666, 10.1090/qam/10666, DOI 10.1090/QAM/10666, DOI 10.1090/QAM/1944-02-02]
[9]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441
[10]  
Stewart G. W., 1990, Matrix Perturbation Theory