Transcriptome-wide m6A methylome during osteogenic differentiation of human adipose-derived stem cells

被引:6
|
作者
Sun, Wentian [1 ,2 ,3 ]
Song, Yidan [1 ,2 ,3 ]
Xia, Kai [1 ,2 ,3 ]
Yu, Liyuan [1 ,2 ,3 ]
Huang, Xinqi [1 ,2 ,3 ]
Zhao, Zhihe [1 ,2 ,3 ]
Liu, Jun [1 ,2 ,3 ]
机构
[1] Sichuan Univ, State Key Lab Oral Dis, West China Hosp Stomatol, 1,4 3rd Sect,South Renmin Rd, Chengdu 610041, Sichuan, Peoples R China
[2] Sichuan Univ, Natl Clin Res Ctr Oral Dis, West China Hosp Stomatol, 14,3rd Sect,South Renmin Rd, Chengdu 610041, Sichuan, Peoples R China
[3] Sichuan Univ, Dept Orthodont, West China Hosp Stomatol, 14,3rd Sect,South Renmin Rd, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Adipose-derived stem cell; m(6)A; MeRIP-seq; N-6-methyladenosine; Osteogenic differentiation; RNA-seq; RNA METHYLATION; BONE; N-6-METHYLADENOSINE; STRATEGIES;
D O I
10.1186/s13287-021-02508-1
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Objectives Adipose-derived stem cells are frequently used for bone regeneration both in vitro and in vivo. N-6-methyladenosine (m(6)A) is the most abundant post-transcriptional modification on eukaryotic RNAs and plays multifaceted roles in development and diseases. However, the regulatory mechanisms of m(6)A in osteogenic differentiation of human adipose-derived stem cells (hASCs) remain elusive. The present study aimed to build the transcriptome-wide m(6)A methylome during the osteogenic differentiation of hASCs. Materials and methods hASCs were harvested after being cultured in a basic or osteogenic medium for 7 days, and the osteogenic differentiation was validated by alkaline phosphatase (ALP) and Alizarin Red S staining, ALP activity assay, and qRT-PCR analysis of ALP, RUNX2, BGLAP, SPP1, SP7, and COL1A1 genes. The m(6)A level was colorimetrically measured, and the expression of m(6)A regulators was confirmed by qRT-PCR and western blot. Moreover, m(6)A MeRIP-seq and RNA-seq were performed to build the transcriptome and m(6)A methylome. Furthermore, bioinformatic analyses including volcano plots, Venn plots, clustering analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, gene sets enrichment analysis, and protein-protein interaction analysis were conducted. Results In total, 1145 differentially methylated peaks, 2261 differentially expressed genes, and 671 differentially methylated and expressed genes (DMEGs) were identified. GO and KEGG pathway analyses conducted for these DMEGs revealed extensive and osteogenic biological functions. The "PI3K-Akt signaling pathway"; "MAPK signaling pathway"; "parathyroid hormone synthesis, secretion, and action"; and "p53 signaling pathway" were significantly enriched, and the DMEGs in these pathways were identified as m(6)A-specific key genes. A protein-protein interaction network based on DMEGs was built, and VEGFA, CD44, MMP2, HGF, and SPARC were speculated as the hub DMEGs. Conclusions The total m(6)A level was reduced with osteogenic differentiation of hASCs. The transcriptome-wide m(6)A methylome built in the present study indicated quite a few signaling pathways, and hub genes were influenced by m(6)A modification. Future studies based on these epigenetic clues could promote understanding of the mechanisms of osteogenic differentiation of hASCs.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] PPARγ silencing enhances osteogenic differentiation of human adipose-derived mesenchymal stem cells
    Lee, Mon-Juan
    Chen, Hui-Ting
    Ho, Mei-Ling
    Chen, Chung-Hwan
    Chuang, Shu-Chun
    Huang, Sung-Cheng
    Fu, Yin-Chih
    Wang, Gwo-Jaw
    Kang, Lin
    Chang, Je-Ken
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2013, 17 (09) : 1188 - 1193
  • [32] Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells
    Mahmoudifar, Nastaran
    Doran, Pauline M.
    BIOTECHNOLOGY PROGRESS, 2013, 29 (01) : 176 - 185
  • [33] The Sulfated Polysaccharide Fucoidan Stimulates Osteogenic Differentiation of Human Adipose-Derived Stem Cells
    Park, Soo-jeong
    Lee, Kyo Won
    Lim, Dae-Seog
    Lee, Suman
    STEM CELLS AND DEVELOPMENT, 2012, 21 (12) : 2204 - 2211
  • [34] Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose
    Zang, Shanshan
    Zhuo, Qi
    Chang, Xiao
    Qiu, Guixing
    Wu, Zhihong
    Yang, Guang
    CARBOHYDRATE POLYMERS, 2014, 104 : 158 - 165
  • [35] Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells
    Zhang, Chunli
    Yu, Lidong
    Liu, Songjian
    Wang, Yuli
    PLOS ONE, 2017, 12 (10):
  • [36] METTL3-Mediated lncRNA m6A Modification in the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Induced by NEL-Like 1 Protein
    Song, Yidan
    Pan, Yihua
    Wu, Mengsong
    Sun, Wentian
    Luo, Liangyu
    Zhao, Zhihe
    Liu, Jun
    STEM CELL REVIEWS AND REPORTS, 2021, 17 (06) : 2276 - 2290
  • [37] Salmonella enhances osteogenic differentiation in adipose-derived mesenchymal stem cells
    Mohamad-Fauzi, Nuradilla
    Shaw, Claire
    Foutouhi, Soraya H.
    Hess, Matthias
    Kong, Nguyet
    Kol, Amir
    Storey, Dylan Bobby
    Desai, Prerak T.
    Shah, Jigna
    Borjesson, Dori
    Murray, James D.
    Weimer, Bart C.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [38] Osteogenic differentiation of adipose-derived stem cells on dihydroartemisinin electrospun nanofibers
    Shabestani N.
    Mousazadeh H.
    Shayegh F.
    Gholami S.
    Mota A.
    Zarghami N.
    Journal of Biological Engineering, 16 (1)
  • [39] Effect of Eucomis autumnalis on the Osteogenic Differentiation of Adipose-Derived Stem Cells
    Mkhumbeni, Nolutho
    Pillay, Michael
    Mtunzi, Fanyana
    Motaung, Keolebogile Shirley Caroline
    TISSUE ENGINEERING PART A, 2022, 28 (3-4) : 136 - 149
  • [40] Review of the Pathways Involved in the Osteogenic Differentiation of Adipose-Derived Stem Cells
    Asserson, Derek B.
    Orbay, Hakan
    Sahar, David E.
    JOURNAL OF CRANIOFACIAL SURGERY, 2019, 30 (03) : 703 - 708