Cobalt-Embedded Nitrogen Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode Reactions in a Wide pH Range

被引:163
作者
Wang, Zilong [1 ]
Xiao, Shuang [1 ]
Zhu, Zonglong [1 ]
Long, Xia [1 ]
Zheng, Xiaoli [1 ]
Lu, Xihong [2 ]
Yang, Shihe [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China
关键词
bifunctional catalyst; carbon nanotube; cobalt-embedment; oxygen electrode reaction; wide pH range function; HIGH ELECTROCATALYTIC ACTIVITY; EVOLUTION REACTION; POROUS CARBON; REDUCTION; GRAPHENE; FE; CO; NANOPARTICLES; COMPOSITE; HYBRID;
D O I
10.1021/am507744y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrocatalysts for the oxygen reduction and evolution reactions (ORR/OER) are often functionally separated, meaning that they are only proficient at one of the tasks. Here we report a high-performance bifunctional catalyst for both ORR and OER in both alkaline and neutral media, which is made of cobalt-embedded nitrogen doped carbon nanotubes. In OER, it shows an overpotential of 200 mV in 0.1 M KOH and 300 mV in neutral media, while the current density reaches 50 mA cm(-2) in alkaline media and 10 mA cm(-2) in neutral media at overpotential of 300 mV. In ORR, it is on par with Pt/C in both alkaline and neutral media in terms of overpotential, but its stability is superior. Further study demonstrated that the high performance can be attributed to the coordination of N to Co and the concomitant structural defects arising from the transformation of cobalt-phthalocyanine precursor.
引用
收藏
页码:4048 / 4055
页数:8
相关论文
共 44 条
[1]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[2]   Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction [J].
Chen, Sheng ;
Duan, Jingjing ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2014, 26 (18) :2925-2930
[3]   Three-Dimensional N-Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution [J].
Chen, Sheng ;
Duan, Jingjing ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (51) :13567-13570
[4]   Hierarchically Porous Nitrogen-Doped Graphene-NiCo2O4 Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material [J].
Chen, Sheng ;
Qiao, Shi-Zhang .
ACS NANO, 2013, 7 (11) :10190-10196
[5]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84
[6]   Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters [J].
Esswein, Arthur J. ;
Surendranath, Yogesh ;
Reece, Steven Y. ;
Nocera, Daniel G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) :499-504
[7]   Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation [J].
Gao, Min-Rui ;
Cao, Xuan ;
Gao, Qiang ;
Xu, Yun-Fei ;
Zheng, Ya-Rong ;
Jiang, Jun ;
Yu, Shu-Hong .
ACS NANO, 2014, 8 (04) :3970-3978
[8]   Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity [J].
Gerken, James B. ;
McAlpin, J. Gregory ;
Chen, Jamie Y. C. ;
Rigsby, Matthew L. ;
Casey, William H. ;
Britt, R. David ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (36) :14431-14442
[9]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[10]   An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation [J].
Gong, Ming ;
Li, Yanguang ;
Wang, Hailiang ;
Liang, Yongye ;
Wu, Justin Z. ;
Zhou, Jigang ;
Wang, Jian ;
Regier, Tom ;
Wei, Fei ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) :8452-8455