Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data

被引:78
作者
Holzinger, Andreas [1 ]
Haibe-Kains, Benjamin [2 ,3 ,4 ]
Jurisica, Igor [3 ,4 ,5 ,6 ]
机构
[1] Med Univ Graz, Inst Med Informat Stat, Auenbruggerplatz 2-V, A-8036 Graz, Austria
[2] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[4] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[5] UHN, Krembil Res Inst, 60 Leonard Ave,5KD-407, Toronto, ON M5T 0S8, Canada
[6] Slovak Acad Sci, Inst Neuroimmunol, Bratislava, Slovakia
关键词
Precision medicine; Artificial intelligence; Machine learning; Decision support; Integrative computational biology; Network-based analysis; Radiomics; ARTIFICIAL-INTELLIGENCE; NETWORK; CANCER; REPRODUCIBILITY; INFORMATION; DEFINITION; SIGNATURES; LETHALITY; GENES;
D O I
10.1007/s00259-019-04382-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases, and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1) the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities. While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and confidence for clinical applications.
引用
收藏
页码:2722 / 2730
页数:9
相关论文
共 77 条
[11]   A New Initiative on Precision Medicine [J].
Collins, Francis S. ;
Varmus, Harold .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (09) :793-795
[12]   Challenges and Promises of PET Radiomics [J].
Cook, Gary J. R. ;
Azad, Gurdip ;
Owczarczyk, Kasia ;
Siddique, Musib ;
Goh, Vicky .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :1083-1089
[13]   Disease Definition for Schizophrenia by Functional Connectivity Using Radiomics Strategy [J].
Cui, Long-Biao ;
Liu, Lin ;
Wang, Hua-Ning ;
Wang, Liu-Xian ;
Guo, Fan ;
Xi, Yi-Bin ;
Liu, Ting-Ting ;
Li, Chen ;
Tian, Ping ;
Liu, Kang ;
Wu, Wen-Jun ;
Chen, Yi-Huan ;
Qin, Wei ;
Yin, Hong .
SCHIZOPHRENIA BULLETIN, 2018, 44 (05) :1053-1059
[14]   Applying Quantitative CT Image Feature Analysis to Predict Response of Ovarian Cancer Patients to Chemotherapy [J].
Danala, Gopichandh ;
Thai, Theresa ;
Gunderson, Camille C. ;
Moxley, Katherine M. ;
Moore, Kathleen ;
Mannel, Robert S. ;
Liu, Hong ;
Zheng, Bin ;
Qiu, Yuchen .
ACADEMIC RADIOLOGY, 2017, 24 (10) :1233-1239
[15]  
Deshpande Prasanna R, 2011, Perspect Clin Res, V2, P137, DOI 10.4103/2229-3485.86879
[16]   Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies [J].
Dias, Duarte ;
Silva Cunha, Joao Paulo .
SENSORS, 2018, 18 (08)
[17]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[18]   Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging [J].
Fortney, Kristen ;
Kotlyar, Max ;
Jurisica, Igor .
GENOME BIOLOGY, 2010, 11 (02)
[19]   High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response [J].
Gao, Hui ;
Korn, Joshua M. ;
Ferretti, Stephane ;
Monahan, John E. ;
Wang, Youzhen ;
Singh, Mallika ;
Zhang, Chao ;
Schnell, Christian ;
Yang, Guizhi ;
Zhang, Yun ;
Balbin, O. Alejandro ;
Barbe, Stephanie ;
Cai, Hongbo ;
Casey, Fergal ;
Chatterjee, Susmita ;
Chiang, Derek Y. ;
Chuai, Shannon ;
Cogan, Shawn M. ;
Collins, Scott D. ;
Dammassa, Ernesta ;
Ebel, Nicolas ;
Embry, Millicent ;
Green, John ;
Kauffmann, Audrey ;
Kowa, Colleen ;
Leary, Rebecca J. ;
Lehar, Joseph ;
Liang, Ying ;
Loo, Alice ;
Lorenzana, Edward ;
McDonald, E. Robert, III ;
McLaughlin, Margaret E. ;
Merkin, Jason ;
Meyer, Ronald ;
Naylor, Tara L. ;
Patawaran, Montesa ;
Reddy, Anupama ;
Roeelli, Claudia ;
Ruddy, David A. ;
Salangsang, Fernando ;
Santacroce, Francesca ;
Singh, Angad P. ;
Tang, Yan ;
Tinetto, Walter ;
Tobler, Sonja ;
Velazquez, Roberto ;
Venkatesan, Kavitha ;
Von Arx, Fabian ;
Wang, Hui Qin ;
Wang, Zongyao .
NATURE MEDICINE, 2015, 21 (11) :1318-1325
[20]   Comprehensive Investigation on Controlling for CT Imaging Variabilities in Radiomics Studies [J].
Ger, Rachel B. ;
Zhou, Shouhao ;
Chi, Pai-Chun Melinda ;
Lee, Hannah J. ;
Layman, Rick R. ;
Jones, A. Kyle ;
Goff, David L. ;
Fuller, Clifton D. ;
Howell, Rebecca M. ;
Li, Heng ;
Stafford, Jason ;
Court, Laurence E. ;
Mackin, Dennis S. .
SCIENTIFIC REPORTS, 2018, 8