Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data

被引:68
作者
Holzinger, Andreas [1 ]
Haibe-Kains, Benjamin [2 ,3 ,4 ]
Jurisica, Igor [3 ,4 ,5 ,6 ]
机构
[1] Med Univ Graz, Inst Med Informat Stat, Auenbruggerplatz 2-V, A-8036 Graz, Austria
[2] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[4] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[5] UHN, Krembil Res Inst, 60 Leonard Ave,5KD-407, Toronto, ON M5T 0S8, Canada
[6] Slovak Acad Sci, Inst Neuroimmunol, Bratislava, Slovakia
关键词
Precision medicine; Artificial intelligence; Machine learning; Decision support; Integrative computational biology; Network-based analysis; Radiomics; ARTIFICIAL-INTELLIGENCE; NETWORK; CANCER; REPRODUCIBILITY; INFORMATION; DEFINITION; SIGNATURES; LETHALITY; GENES;
D O I
10.1007/s00259-019-04382-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases, and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1) the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities. While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and confidence for clinical applications.
引用
收藏
页码:2722 / 2730
页数:9
相关论文
共 77 条
  • [11] A New Initiative on Precision Medicine
    Collins, Francis S.
    Varmus, Harold
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (09) : 793 - 795
  • [12] Challenges and Promises of PET Radiomics
    Cook, Gary J. R.
    Azad, Gurdip
    Owczarczyk, Kasia
    Siddique, Musib
    Goh, Vicky
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04): : 1083 - 1089
  • [13] Disease Definition for Schizophrenia by Functional Connectivity Using Radiomics Strategy
    Cui, Long-Biao
    Liu, Lin
    Wang, Hua-Ning
    Wang, Liu-Xian
    Guo, Fan
    Xi, Yi-Bin
    Liu, Ting-Ting
    Li, Chen
    Tian, Ping
    Liu, Kang
    Wu, Wen-Jun
    Chen, Yi-Huan
    Qin, Wei
    Yin, Hong
    [J]. SCHIZOPHRENIA BULLETIN, 2018, 44 (05) : 1053 - 1059
  • [14] Applying Quantitative CT Image Feature Analysis to Predict Response of Ovarian Cancer Patients to Chemotherapy
    Danala, Gopichandh
    Thai, Theresa
    Gunderson, Camille C.
    Moxley, Katherine M.
    Moore, Kathleen
    Mannel, Robert S.
    Liu, Hong
    Zheng, Bin
    Qiu, Yuchen
    [J]. ACADEMIC RADIOLOGY, 2017, 24 (10) : 1233 - 1239
  • [15] Deshpande Prasanna R, 2011, Perspect Clin Res, V2, P137, DOI 10.4103/2229-3485.86879
  • [16] Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies
    Dias, Duarte
    Silva Cunha, Joao Paulo
    [J]. SENSORS, 2018, 18 (08)
  • [17] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [18] Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging
    Fortney, Kristen
    Kotlyar, Max
    Jurisica, Igor
    [J]. GENOME BIOLOGY, 2010, 11 (02):
  • [19] High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response
    Gao, Hui
    Korn, Joshua M.
    Ferretti, Stephane
    Monahan, John E.
    Wang, Youzhen
    Singh, Mallika
    Zhang, Chao
    Schnell, Christian
    Yang, Guizhi
    Zhang, Yun
    Balbin, O. Alejandro
    Barbe, Stephanie
    Cai, Hongbo
    Casey, Fergal
    Chatterjee, Susmita
    Chiang, Derek Y.
    Chuai, Shannon
    Cogan, Shawn M.
    Collins, Scott D.
    Dammassa, Ernesta
    Ebel, Nicolas
    Embry, Millicent
    Green, John
    Kauffmann, Audrey
    Kowa, Colleen
    Leary, Rebecca J.
    Lehar, Joseph
    Liang, Ying
    Loo, Alice
    Lorenzana, Edward
    McDonald, E. Robert, III
    McLaughlin, Margaret E.
    Merkin, Jason
    Meyer, Ronald
    Naylor, Tara L.
    Patawaran, Montesa
    Reddy, Anupama
    Roeelli, Claudia
    Ruddy, David A.
    Salangsang, Fernando
    Santacroce, Francesca
    Singh, Angad P.
    Tang, Yan
    Tinetto, Walter
    Tobler, Sonja
    Velazquez, Roberto
    Venkatesan, Kavitha
    Von Arx, Fabian
    Wang, Hui Qin
    Wang, Zongyao
    [J]. NATURE MEDICINE, 2015, 21 (11) : 1318 - 1325
  • [20] Comprehensive Investigation on Controlling for CT Imaging Variabilities in Radiomics Studies
    Ger, Rachel B.
    Zhou, Shouhao
    Chi, Pai-Chun Melinda
    Lee, Hannah J.
    Layman, Rick R.
    Jones, A. Kyle
    Goff, David L.
    Fuller, Clifton D.
    Howell, Rebecca M.
    Li, Heng
    Stafford, Jason
    Court, Laurence E.
    Mackin, Dennis S.
    [J]. SCIENTIFIC REPORTS, 2018, 8