Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data

被引:68
作者
Holzinger, Andreas [1 ]
Haibe-Kains, Benjamin [2 ,3 ,4 ]
Jurisica, Igor [3 ,4 ,5 ,6 ]
机构
[1] Med Univ Graz, Inst Med Informat Stat, Auenbruggerplatz 2-V, A-8036 Graz, Austria
[2] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[4] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[5] UHN, Krembil Res Inst, 60 Leonard Ave,5KD-407, Toronto, ON M5T 0S8, Canada
[6] Slovak Acad Sci, Inst Neuroimmunol, Bratislava, Slovakia
关键词
Precision medicine; Artificial intelligence; Machine learning; Decision support; Integrative computational biology; Network-based analysis; Radiomics; ARTIFICIAL-INTELLIGENCE; NETWORK; CANCER; REPRODUCIBILITY; INFORMATION; DEFINITION; SIGNATURES; LETHALITY; GENES;
D O I
10.1007/s00259-019-04382-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases, and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1) the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities. While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and confidence for clinical applications.
引用
收藏
页码:2722 / 2730
页数:9
相关论文
共 77 条
  • [1] Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC
    Aerts, Hugo J. W. L.
    Grossmann, Patrick
    Tan, Yongqiang
    Oxnard, Geoffrey G.
    Rizvi, Naiyer
    Schwartz, Lawrence H.
    Zhao, Binsheng
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [2] Asim M, 2018, SURVEY ONTOLOGY LEAR
  • [3] Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging A Phantom Study
    Baessler, Bettina
    Weiss, Kilian
    dos Santos, Daniel Pinto
    [J]. INVESTIGATIVE RADIOLOGY, 2019, 54 (04) : 221 - 228
  • [4] Reproducibility of computational workflows is automated using continuous analysis
    Beaulieu-Jones, Brett K.
    Greene, Casey S.
    [J]. NATURE BIOTECHNOLOGY, 2017, 35 (04) : 342 - +
  • [5] Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury
    Bigler, Erin D.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2016, 10
  • [6] Prognostic gene signatures for non-small-cell lung cancer
    Boutros, Paul C.
    Lau, Suzanne K.
    Pintilie, Melania
    Liu, Ni
    Shepherd, Frances A.
    Der, Sandy D.
    Tsao, Ming-Sound
    Penn, Linda Z.
    Jurisica, Igor
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (08) : 2824 - 2828
  • [7] Advances in Auto-Segmentation
    Cardenas, Carlos E.
    Yang, Jinzhong
    Anderson, Brian M.
    Court, Laurence E.
    Brock, Kristy B.
    [J]. SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (03) : 185 - 197
  • [8] WRN helicase is a synthetic lethal target in microsatellite unstable cancers
    Chan, Edmond M.
    Shibue, Tsukasa
    McFarland, James M.
    Gaeta, Benjamin
    Ghandi, Mahmoud
    Dumont, Nancy
    Gonzalez, Alfredo
    McPartlan, Justine S.
    Li, Tianxia
    Zhang, Yanxi
    Liu, Jie Bin
    Lazaro, Jean-Bernard
    Gu, Peili
    Piett, Cortt G.
    Apffel, Annie
    Ali, Syed O.
    Deasy, Rebecca
    Keskula, Paula
    Ng, Raymond W. S.
    Roberts, Emma A.
    Reznichenko, Elizaveta
    Leung, Lisa
    Alimova, Maria
    Schenone, Monica
    Islam, Mirazul
    Maruvka, Yosef E.
    Liu, Yang
    Roper, Jatin
    Raghavan, Srivatsan
    Giannakis, Marios
    Tseng, Yuen-Yi
    Nagel, Zachary D.
    D'Andrea, Alan
    Root, David E.
    Boehm, Jesse S.
    Getz, Gad
    Chang, Sandy
    Golub, Todd R.
    Tsherniak, Aviad
    Vazquez, Francisca
    Bass, Adam J.
    [J]. NATURE, 2019, 568 (7753) : 551 - +
  • [9] Deep Learning: A Primer for Radiologists
    Chartrand, Gabriel
    Cheng, Phillip M.
    Vorontsov, Eugene
    Drozdzal, Michal
    Turcotte, Simon
    Pal, Christopher J.
    Kadoury, Samuel
    Tang, An
    [J]. RADIOGRAPHICS, 2017, 37 (07) : 2113 - 2131
  • [10] Network-based classification of breast cancer metastasis
    Chuang, Han-Yu
    Lee, Eunjung
    Liu, Yu-Tsueng
    Lee, Doheon
    Ideker, Trey
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)