Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data

被引:78
作者
Holzinger, Andreas [1 ]
Haibe-Kains, Benjamin [2 ,3 ,4 ]
Jurisica, Igor [3 ,4 ,5 ,6 ]
机构
[1] Med Univ Graz, Inst Med Informat Stat, Auenbruggerplatz 2-V, A-8036 Graz, Austria
[2] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[4] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[5] UHN, Krembil Res Inst, 60 Leonard Ave,5KD-407, Toronto, ON M5T 0S8, Canada
[6] Slovak Acad Sci, Inst Neuroimmunol, Bratislava, Slovakia
关键词
Precision medicine; Artificial intelligence; Machine learning; Decision support; Integrative computational biology; Network-based analysis; Radiomics; ARTIFICIAL-INTELLIGENCE; NETWORK; CANCER; REPRODUCIBILITY; INFORMATION; DEFINITION; SIGNATURES; LETHALITY; GENES;
D O I
10.1007/s00259-019-04382-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases, and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1) the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities. While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and confidence for clinical applications.
引用
收藏
页码:2722 / 2730
页数:9
相关论文
共 77 条
[1]   Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC [J].
Aerts, Hugo J. W. L. ;
Grossmann, Patrick ;
Tan, Yongqiang ;
Oxnard, Geoffrey G. ;
Rizvi, Naiyer ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
SCIENTIFIC REPORTS, 2016, 6
[2]  
Asim M, 2018, SURVEY ONTOLOGY LEAR
[3]   Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging A Phantom Study [J].
Baessler, Bettina ;
Weiss, Kilian ;
dos Santos, Daniel Pinto .
INVESTIGATIVE RADIOLOGY, 2019, 54 (04) :221-228
[4]   Reproducibility of computational workflows is automated using continuous analysis [J].
Beaulieu-Jones, Brett K. ;
Greene, Casey S. .
NATURE BIOTECHNOLOGY, 2017, 35 (04) :342-+
[5]   Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury [J].
Bigler, Erin D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2016, 10
[6]   Prognostic gene signatures for non-small-cell lung cancer [J].
Boutros, Paul C. ;
Lau, Suzanne K. ;
Pintilie, Melania ;
Liu, Ni ;
Shepherd, Frances A. ;
Der, Sandy D. ;
Tsao, Ming-Sound ;
Penn, Linda Z. ;
Jurisica, Igor .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (08) :2824-2828
[7]   Advances in Auto-Segmentation [J].
Cardenas, Carlos E. ;
Yang, Jinzhong ;
Anderson, Brian M. ;
Court, Laurence E. ;
Brock, Kristy B. .
SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (03) :185-197
[8]   WRN helicase is a synthetic lethal target in microsatellite unstable cancers [J].
Chan, Edmond M. ;
Shibue, Tsukasa ;
McFarland, James M. ;
Gaeta, Benjamin ;
Ghandi, Mahmoud ;
Dumont, Nancy ;
Gonzalez, Alfredo ;
McPartlan, Justine S. ;
Li, Tianxia ;
Zhang, Yanxi ;
Liu, Jie Bin ;
Lazaro, Jean-Bernard ;
Gu, Peili ;
Piett, Cortt G. ;
Apffel, Annie ;
Ali, Syed O. ;
Deasy, Rebecca ;
Keskula, Paula ;
Ng, Raymond W. S. ;
Roberts, Emma A. ;
Reznichenko, Elizaveta ;
Leung, Lisa ;
Alimova, Maria ;
Schenone, Monica ;
Islam, Mirazul ;
Maruvka, Yosef E. ;
Liu, Yang ;
Roper, Jatin ;
Raghavan, Srivatsan ;
Giannakis, Marios ;
Tseng, Yuen-Yi ;
Nagel, Zachary D. ;
D'Andrea, Alan ;
Root, David E. ;
Boehm, Jesse S. ;
Getz, Gad ;
Chang, Sandy ;
Golub, Todd R. ;
Tsherniak, Aviad ;
Vazquez, Francisca ;
Bass, Adam J. .
NATURE, 2019, 568 (7753) :551-+
[9]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[10]   Network-based classification of breast cancer metastasis [J].
Chuang, Han-Yu ;
Lee, Eunjung ;
Liu, Yu-Tsueng ;
Lee, Doheon ;
Ideker, Trey .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)