Exact solution of the Schrodinger equation for the time-dependent harmonic oscillator

被引:2
|
作者
Li, YS [1 ]
He, JS
机构
[1] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
[2] Univ Sci & Technol China, Ctr Nonlinear Sci, Anhua 230026, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1998年 / 43卷 / 13期
关键词
time-dependent harmonic oscillator; Schrodinger equation; Lax equation; recursion operator;
D O I
10.1007/BF02883074
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By using the soliton theory, it is known that the exact solutions of the Schrodinger equation for the time-dependent harmonic oscillator only need to solve an oscillation equation with respect to space variable and a time-dependent Schrodinger equation.
引用
收藏
页码:1066 / 1071
页数:6
相关论文
共 50 条
  • [41] Exact solution of Schrodinger equation for Pseudoharmonic potential
    Sever, Ramazan
    Tezcan, Cevdet
    Aktas, Metin
    Yesiltas, Oezlem
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (02) : 845 - 851
  • [42] Gaussian Klauder coherent states of general time-dependent harmonic oscillator
    Choi, JR
    PHYSICS LETTERS A, 2004, 325 (01) : 1 - 8
  • [43] Analytical Solutions and Integrable Structure of the Time-Dependent Harmonic Oscillator With Friction
    An, Hongli
    Chan, Waihong
    Li, Biao
    Yuen, Manwai
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (04): : 269 - 280
  • [44] Superconvergence analysis of finite element method for the time-dependent Schrodinger equation
    Wang, Jianyun
    Huang, Yunqing
    Tian, Zhikun
    Zhou, Jie
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 1960 - 1972
  • [45] HOLDER STABLY DETERMINING THE TIME-DEPENDENT ELECTROMAGNETIC POTENTIAL OF THE SCHRODINGER EQUATION
    Kian, Yavar
    Soccorsi, Eric
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 627 - 647
  • [46] Nonlocality and local causality in the Schrodinger equation with time-dependent boundary conditions
    Matzkin, A.
    Mousavi, S., V
    Waegell, M.
    PHYSICS LETTERS A, 2018, 382 (46) : 3347 - 3354
  • [47] Quantum invariants for solving the time-dependent Schrodinger equation in one dimension
    Li, BZ
    Wang, SE
    Zhang, LY
    Zhang, XD
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 31 (03) : 379 - 382
  • [48] Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass
    Jafarov, E. I.
    van der Jeugt, J.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (07)
  • [49] Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states
    Yi, Z
    Yang, XE
    ACTA PHYSICA SINICA, 2005, 54 (02) : 511 - 516
  • [50] Numerical solutions of the time-dependent Schrodinger equation with position-dependent effective mass
    Gao, Yijin
    Mayfield, Jay
    Luo, Songting
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 3222 - 3245