Homoclinic solutions for a nonlinear second order differential system with p-Laplacian operator

被引:27
作者
Lu, Shiping [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhan 241000, Anhui, Peoples R China
关键词
Critical point theory; Homoclinic solution; Periodic solution; p-Laplacian differential system;
D O I
10.1016/j.nonrwa.2010.06.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author of this paper studies the existence of local minimum point of functional phi in the first, and then the existence of homoclinic solutions to a p-Laplacian system d/dt[vertical bar u'(t)vertical bar(p-2)u'(t)] = Delta F(t, u(t)) + f (t) is investigated. Under local condition F(t. x) >= F(t, 0) + b(0)vertical bar x vertical bar(mu) for all (t, x) is an element of R x R-n with vertical bar x vertical bar <= rho, where b(0) > 0, rho > 0 and mu > 1 are constants, some new results are obtained. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:525 / 534
页数:10
相关论文
共 50 条