Nonisothermal Cold Crystallization Kinetics of Poly(lactic acid)/Bacterial Poly(hydroxyoctanoate (PHO)/Talc

被引:13
作者
Alhaddad, Omaima [1 ]
El-Taweel, Safaa H. [2 ]
Elbahloul, Yasser [3 ,4 ]
机构
[1] Taibah Univ, Coll Sci, Dept Chem, Al Madinah Al Munawarah 30002, Saudi Arabia
[2] Cairo Univ, Fac Sci, Chem Dept, Orman Giza 12613, Egypt
[3] Taibah Univ, Coll Sci, Dept Biol, Al Madinah Al Munawarah 30002, Saudi Arabia
[4] Alexandria Univ, Fac Sci, Bot & Microbiol Dept, Alexandria, Egypt
关键词
PLA; PHO; talc; DSC; TGA; isoconversional method of Kissinger-Akahira-Sunose (KAS); modified Avrami; Activation Energy; MECHANICAL-PROPERTIES; POLY(L-LACTIC ACID); THERMAL-STABILITY; ACTIVATION-ENERGY; HEATING RATE; BEHAVIOR; TALC; MORPHOLOGY;
D O I
10.1515/chem-2019-0138
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effects of bacterial poly(hydroxyoctanoate) (PHO) and talc on the nonisothermal cold crystallization behaviours of poly(lactic acid) (PLA) were analysed with differential scanning calorimetry (DSC), and the thermal stability of the samples was observed with thermal gravimetric analysis (TGA). The modified Avrami's model was used to describe the nonisothermal cold crystallization kinetics of neat PLA and its blends. The activation energies E for nonisothermal cold crystallization were calculated by the isoconversional method of Kissinger-Akahira-Sunose (KAS). The DSC results showed that the PLA/PHO blends were immiscible in the whole studied range, and as the PHO and talc content increased, the crystallization rate of PLA accelerated, and the crystallinity of PLA in the PLA samples increased. The values of the Avrami exponent indicated that the nonisothermal cold crystallization of the neat PLA and its blends exhibited heterogeneous, three-dimensional spherulitic growth. The E values were strongly dependent on PHO and talc. The TGA results showed that the presence of PHO and talc slightly influenced the thermal stability of PLA.
引用
收藏
页码:1266 / 1278
页数:13
相关论文
共 50 条
[1]  
Akahira T., 1971, RES REPORT CHIBA I T, V16, P22, DOI DOI 10.1021/I200014A015
[2]  
[Anonymous], 2014, AKTS THERM VERS 4 02
[3]  
Avrami M., 1940, J. Chem. Phys, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
[4]   THERMAL BEHAVIOR OF GROUND TALC MINERAL [J].
Balek, V. ;
Subrt, J. ;
Perez-Maqueda, L. A. ;
Benes, M. ;
Bountseva, I. M. ;
Beckman, I. N. ;
Perez-Rodriguez, J. L. .
JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY, 2008, 44 (01) :7-17
[5]   Crystallization kinetics of poly(lactic acid)-talc composites [J].
Battegazzore, D. ;
Bocchini, S. ;
Frache, A. .
EXPRESS POLYMER LETTERS, 2011, 5 (10) :849-858
[6]   DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends [J].
Cao, X ;
Mohamed, A ;
Gordon, SH ;
Willett, JL ;
Sessa, DJ .
THERMOCHIMICA ACTA, 2003, 406 (1-2) :115-127
[7]   CRYSTALLIZATION BEHAVIOR OF POLY(ETHERETHERKETONE) [J].
CEBE, P ;
HONG, SD .
POLYMER, 1986, 27 (08) :1183-1192
[8]   Melt compounding of poly (Lactic Acid) and talc: assessment of material behavior during processing and resulting crystallization [J].
De Santis, Felice ;
Pantani, Roberto .
JOURNAL OF POLYMER RESEARCH, 2015, 22 (12) :1-9
[9]   Isothermal and Non-Isothermal Crystallization of Poly(L-lactic acid)/Poly(butylene terephthalate) Blends [J].
Di Lorenzo, Maria Laura ;
Rubino, Paolo ;
Cocca, Mariacristina .
JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (12)
[10]   The crystallization and melting processes of poly(L-lactic acid) [J].
Di Lorenzo, ML .
MACROMOLECULAR SYMPOSIA, 2006, 234 :176-183