On the effective metric of a Planck star

被引:83
作者
De Lorenzo, Tommaso [1 ,3 ,4 ]
Pacilio, Costantino [2 ,3 ,4 ]
Rovelli, Carlo [3 ,4 ]
Speziale, Simone [3 ,4 ]
机构
[1] Univ Pisa, Dipartimento Fis, Enrico Fermi, I-56127 Pisa, Italy
[2] SISSA, I-34136 Trieste, Italy
[3] Aix Marseille Univ, CNRS, CPT, UMR 7332, F-13288 Marseille, France
[4] Univ Toulon & Var, CNRS, CPT, UMR 7332, F-83957 La Garde, France
关键词
Quantum gravity; Black hole physics; Spacetime singularities; Apparent horizons; BLACK-HOLE; QUANTUM-GRAVITY; COLLAPSE;
D O I
10.1007/s10714-015-1882-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spacetime metrics describing 'non-singular' black holes are commonly studied in the literature as effective modification to the Schwarzschild solution that mimic quantum gravity effects removing the central singularity. Here we point out that to be physically plausible, such metrics should also incorporate the 1-loop quantum corrections to the Newton potential and a non-trivial time delay between an observer at infinity and an observer in the regular center. We present a modification of the well-known Hayward metric that features these two properties. We discuss bounds on the maximal time delay imposed by conditions on the curvature, and the consequences for the weak energy condition, in general violated by the large transversal pressures introduced by the time delay.
引用
收藏
页数:16
相关论文
共 29 条
  • [21] Haggard H.M., ARXIV14070989
  • [22] Formation and evaporation of nonsingular black holes
    Hayward, SA
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (03)
  • [23] Mersini-Houghton L, 2014, PHYS LETT B
  • [24] Black holes in an ultraviolet complete quantum gravity
    Modesto, Leonardo
    Moffat, John W.
    Nicolini, Piero
    [J]. PHYSICS LETTERS B, 2011, 695 (1-4) : 397 - 400
  • [25] Noncommutative geometry inspired Schwarzschild black hole
    Nicolini, P
    Smailagic, A
    Spallucci, E
    [J]. PHYSICS LETTERS B, 2006, 632 (04) : 547 - 551
  • [26] Perez A., ARXIV14107062
  • [27] STELLAR COLLAPSE WITHOUT SINGULARITIES
    ROMAN, TA
    BERGMANN, PG
    [J]. PHYSICAL REVIEW D, 1983, 28 (06): : 1265 - 1277
  • [28] Rovelli C, 2015, COVARIANT LOOP QUANTUM GRAVITY: AN ELEMENTARY INTRODUCTION TO QUANTUM GRAVITY AND SPINFOAM THEORY, P1
  • [29] Wald R., 2010, General Relativity"