Global Existence and Blow-up for Semilinear Wave Equations with Variable Coefficients

被引:14
作者
Lei, Qian [1 ,2 ]
Yang, Han [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Transportat & Logist, Chengdu 610031, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Semilinear wave equations; Global existence; Energy decay; L-2 and Lp+1 estimates; Blow up; CRITICAL EXPONENT; SPACE DIMENSIONS;
D O I
10.1007/s11401-018-0087-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors consider the critical exponent problem for the variable coefficients wave equation with a space dependent potential and source term. For sufficiently small data with compact support, if the power of nonlinearity is larger than the expected exponent, it is proved that there exists a global solution. Furthermore, the precise decay estimates for the energy, L-2 and Lp+1 norms of solutions are also established. In addition, the blow-up of the solutions is proved for arbitrary initial data with compact support when the power of nonlinearity is less than some constant.
引用
收藏
页码:643 / 664
页数:22
相关论文
共 22 条
[1]   Nonlinear Internal Damping of Wave Equations with Variable Coefficients [J].
Feng, Shao Ji ;
Feng, De Xing .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (06) :1057-1072
[2]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[3]   Weighted Strichartz estimates and global existence for semilinear wave equations [J].
Georgiev, V ;
Lindblad, H ;
Sogge, CD .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) :1291-1319
[4]   EXISTENCE IN THE LARGE FOR CLASS U = F (U) IN 2 SPACE DIMENSIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (02) :233-261
[5]  
Ikawa M., 2000, Translations of Mathematical Monographs
[6]   Global existence of solutions for semilinear damped wave equations in RN with noncompactly supported initial data [J].
Ikehata, R ;
Tanizawa, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (07) :1189-1208
[7]   Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential [J].
Ikehata, Ryo ;
Todorova, Grozdena ;
Yordanov, Borislav .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (03) :411-435
[9]  
Lindblad H, 1995, PREPRINT
[10]   Asymptotic Behavior of Solutions to the Semilinear Wave Equation with Time-dependent Damping [J].
Nishihara, Kenji .
TOKYO JOURNAL OF MATHEMATICS, 2011, 34 (02) :327-343