Cycle classes on the moduli of K3 surfaces in positive characteristic

被引:6
作者
Ekedahl, Torsten [1 ]
van der Geer, Gerard [2 ]
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[2] Univ Amsterdam, Korteweg de Vries Inst, NL-1090 GE Amsterdam, Netherlands
来源
SELECTA MATHEMATICA-NEW SERIES | 2015年 / 21卷 / 01期
关键词
K3; surface; Height; Artin invariant; CURVES;
D O I
10.1007/s00029-014-0156-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides explicit closed formulas in terms of tautological classes for the cycle classes of the height and Artin invariant strata in families of K3 surfaces. The proof is uniform for all strata and uses a flag space as the computations in Ekedahl and van der Geer (Algebra, arithmetic and geometry, progress in mathematics, vol. 269-270, Birkhauser, Basel, 2010) for the Ekedahl-Oort strata for families of abelian varieties, but employs a Pieri formula to determine the push down to the base space.
引用
收藏
页码:245 / 291
页数:47
相关论文
共 29 条