Auger Recombination in III-Nitride Nanowires and Its Effect on Nanowire Light-Emitting Diode Characteristics

被引:141
作者
Guo, Wei [1 ]
Zhang, Meng [1 ]
Bhattacharya, Pallab [1 ]
Heo, Junseok [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ctr Nanoscale Photon & Spintron, Ann Arbor, MI 48109 USA
关键词
Nitride semiconductor; nanowires; auger recombination; efficiency droop; CATALYST-FREE; GAN NANOWIRES; GROWTH; PHOTOLUMINESCENCE; NUCLEATION; MECHANISM; ALGAN;
D O I
10.1021/nl103649d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have measured the Auger recombination coefficients in defect-free InGaN nanowires (NW) and InGaN/GaN dot-in-nanowire (DNW) samples grown on (001) silicon by plasma assisted molecular beam epitaxy. The nanowires have a density of similar to 1 x 10(11) cm(-2) and exhibit photoluminescence emission peak at lambda similar to 500 nm. The Auger coefficients as a function of excitation power have been derived from excitation dependent and time resolved photoluminescence measurements over a wide range of optical excitation rower density. The values of C-0, defined as the Auger coefficient at low excitation, are 6.1 x 10(-32) and 4.1 x 10(-33) cm(6).s(-1) in the NW and DNW samples, respectively, which are in reasonably good agreement with theoretical predictions for InGaN alloy semiconductors. Light emitting diodes made with the NW and DNW samples exhibit no efficiency droop up to an injection current density of 400 A/cm(2).
引用
收藏
页码:1434 / 1438
页数:5
相关论文
共 42 条
[1]   Deep level optical spectroscopy of GaN nanorods [J].
Armstrong, A. ;
Li, Q. ;
Bogart, K. H. A. ;
Lin, Y. ;
Wang, G. T. ;
Talin, A. A. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
[2]   A numerical study of Auger recombination in bulk InGaN [J].
Bertazzi, Francesco ;
Goano, Michele ;
Bellotti, Enrico .
APPLIED PHYSICS LETTERS, 2010, 97 (23)
[3]   Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy [J].
Bertness, K. A. ;
Roshko, A. ;
Mansfield, L. M. ;
Harvey, T. E. ;
Sanford, N. A. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (13) :3154-3158
[4]   Spontaneously grown GaN and AlGaN nanowires [J].
Bertness, KA ;
Roshko, A ;
Sanford, NA ;
Barker, JM ;
Davydov, A .
JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) :522-527
[5]  
Bhattacharya P., 1996, Semiconductor Optoelectronic Devices
[6]   Infrared absorption in bismuth nanowires resulting from quantum confinement [J].
Black, MR ;
Lin, YM ;
Cronin, SB ;
Rabin, O ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2002, 65 (19) :1-9
[7]   Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy [J].
Calarco, Raffaella ;
Meijers, Ralph J. ;
Debnath, Ratan K. ;
Stoica, Toma ;
Sutter, Eli ;
Luth, Hans. .
NANO LETTERS, 2007, 7 (08) :2248-2251
[8]   Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks [J].
Calleja, E. ;
Ristic, J. ;
Fernandez-Garrido, S. ;
Cerutti, L. ;
Sanchez-Garcia, M. A. ;
Grandal, J. ;
Trampert, A. ;
Jahn, U. ;
Sanchez, G. ;
Griol, A. ;
Sanchez, B. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (08) :2816-2837
[9]   Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy [J].
Cerutti, L. ;
Ristic, J. ;
Fernandez-Garrido, S. ;
Calleja, E. ;
Trampert, A. ;
Ploog, K. H. ;
Lazic, S. ;
Calleja, J. M. .
APPLIED PHYSICS LETTERS, 2006, 88 (21)
[10]   Direct comparison of catalyst-free and catalyst-induced GaN nanowires [J].
Cheze, Caroline ;
Geelhaar, Lutz ;
Brandt, Oliver ;
Weber, Walter M. ;
Riechert, Henning ;
Muench, Steffen ;
Rothemund, Ralph ;
Reitzenstein, Stephan ;
Forchel, Alfred ;
Kehagias, Thomas ;
Komninou, Philomela ;
Dimitrakopulos, George P. ;
Karakostas, Theodoros .
NANO RESEARCH, 2010, 3 (07) :528-536