Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes.

被引:47
作者
Le Potier, C [1 ]
机构
[1] CEA, DEN, SFME, MTMS, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1016/j.crma.2005.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a finite volume method for highly anisotropic diffusion operators on unstructured meshes. The main idea is to calculate the gradient on each cell vertex using the cell-centered unknown and other unknowns calculated on the cell edges. These degrees of freedom are eliminated imposing flux continuity conditions. The resulting global matrix is symmetric and positive definite. We show the robustness and the precision of the method in comparison with analytical solutions and results obtained by other numerical schemes. (c) 2005 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.
引用
收藏
页码:921 / 926
页数:6
相关论文
共 5 条
[1]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[2]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[3]  
DABBENE F, 1998, P 10 INT C FIN EL FL
[4]  
LEPOTIER C, 2005, FINITE VOLUMES COMPL, V4
[5]  
LEPOTIER C, 2004, P 15 INT C COMP METH, V2, P1015