Verifying irreducibility and continuity of a nonlinear time series

被引:34
作者
Cline, DBH [1 ]
Pu, HMH [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
psi-irreducibility; aperiodicity; T-chain; Feller chain;
D O I
10.1016/S0167-7152(98)00081-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When considering the stability of a nonlinear time series, verifying aperiodicity, irreducibility and smoothness of the transitions for the corresponding Markov chain is often the first step. Here, we provide reasonably general conditions applicable to nonlinear autoregressive time series, including many with nonadditive errors. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 14 条
  • [1] [Anonymous], 1992, Stochastic Stability of Markov chains
  • [2] Ash R. B., 1972, REAL ANAL PROBABILIT, DOI DOI 10.1016/C2013-0-06164-6
  • [3] CHAN KS, 1993, DIMENSIONS ESTIMATIO, P108
  • [4] CLINE DBH, 1997, GEOMETRIC ERGODICITY
  • [5] CLINE DBH, 1997, STABILITY NONLINEAR
  • [6] CLINE DBH, 1998, GEOMETRIC ERGODICITY
  • [7] AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION
    ENGLE, RF
    [J]. ECONOMETRICA, 1982, 50 (04) : 987 - 1007
  • [8] Granger C.W.J., 1978, INTRO BILINEAR TIME
  • [9] GUEGAN D, 1994, STAT SINICA, V4, P71
  • [10] NON-LINEAR AUTOREGRESSIVE PROCESSES
    JONES, DA
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 360 (1700): : 71 - 95