Optimal boundary control of a system describing thermal convection

被引:20
作者
Korotkii, A. I. [1 ]
Kovtunov, D. A. [1 ]
机构
[1] Russian Acad Sci, Inst Math & Mech, Ural Div, Ekaterinburg 620990, Russia
基金
俄罗斯基础研究基金会;
关键词
optimal control; thermal convection; gradient method; STOKES;
D O I
10.1134/S0081543811020076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A problem of optimal boundary control of thermal sources for a stationary model of natural thermal convection of a high-viscosity inhomogeneous incompressible fluid in the Boussinesq approximation is investigated. Conditions for the solvability of the problem, as well as necessary and sufficient optimality conditions, are specified. Optimality conditions and the corresponding adjoint problems defining the gradient of the quality functional are written for several special cases of the functional. Computational procedures for finding an optimal control based on gradient methods are described. The results of numerical experiments are given.
引用
收藏
页码:74 / 100
页数:27
相关论文
共 47 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
ALEKSEEV GV, 2001, SIB MAT ZH, V42, P971
[3]  
ALEKSEEV GV, 2006, SIB ZH IND MAT, V9, P13
[4]  
Alekseev GV, 2008, ANAL OPTIMIZATION VI
[5]  
Alifanov OM., 1988, INVERSE PROBLEMS HEA
[6]  
[Anonymous], 1968, MATH HDB SCI ENG
[7]  
[Anonymous], 2002, Optimization methods
[8]  
[Anonymous], 1988, SOME APPL FUNCTIONAL
[9]  
[Anonymous], 1990, FDN NONSMOOTH ANAL Q
[10]  
[Anonymous], 1971, Computational Methods in Optimization: A Unified Approach