Common fixed point theorems for families of occasionally weakly compatible mappings

被引:25
作者
Ciric, Ljubomir [2 ]
Samet, Bessem [1 ]
Vetro, Calogero [3 ]
机构
[1] Ecole Super Sci & Tech Tunis, Dept Math, Bab Menara 1008, Tunisia
[2] Fac Mech Engn, Belgrade 11000, Serbia
[3] Univ Palermo, Dept Math & Informat, I-90123 Palermo, Italy
关键词
Common fixed points; Occasionally weakly compatible mappings; Probabilistic metric space; METRIC-SPACES; MAPS;
D O I
10.1016/j.mcm.2010.09.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We prove some common fixed point theorems in probabilistic semi-metric spaces for families of occasionally weakly compatible mappings. We also give a common fixed point theorem for mappings satisfying an integral-type implicit relation. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:631 / 636
页数:6
相关论文
共 17 条
[1]   Fuzzy common fixed point theorems for generalized contractive mappings [J].
Abbas, M. ;
Damjanovic, Bosko ;
Lazovic, Rade .
APPLIED MATHEMATICS LETTERS, 2010, 23 (11) :1326-1330
[2]  
Abbas M, 2008, MATH COMMUN, V13, P295
[3]   Generalized I-nonexpansive selfmaps and invariant approximations [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (05) :867-876
[4]  
Cho YJ, 2010, J COMPUT ANAL APPL, V12, P76
[5]   Common fixed point theorems for families of weakly compatible maps [J].
Ciric, Ljubomir ;
Razani, A. ;
Radenovic, Stojan ;
Ume, J. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (11) :2533-2543
[6]   Jungck's common fixed point theorem and E.A property [J].
Imdad, M. ;
Ali, Javid .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (01) :87-94
[7]   COMMUTING MAPPINGS AND FIXED-POINTS [J].
JUNGCK, G .
AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (04) :261-263
[8]  
Jungck G., 2006, FIXED POINT THEOR-RO, V7, P286
[9]  
Jungck G., 1986, Int. J. Math. Sci., V9, P771, DOI DOI 10.1155/S0161171286000935
[10]   Statistical metrics [J].
Menger, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1942, 28 :535-537