Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine

被引:510
作者
Kinnear, Calum [1 ,2 ]
Moore, Thomas L. [3 ,4 ]
Rodriguez-Lorenzo, Laura [3 ,4 ]
Rothen-Rutishauser, Barbara [3 ,4 ]
Petri-Fink, Alke [3 ,4 ]
机构
[1] Univ Melbourne, Inst Bio21, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia
[3] Univ Fribourg, Adolphe Merkle Inst, CH-1700 Fribourg, Switzerland
[4] Univ Fribourg, Chem Dept, CH-1700 Fribourg, Switzerland
基金
瑞士国家科学基金会;
关键词
RECEPTOR-MEDIATED ENDOCYTOSIS; DEEP EUTECTIC SOLVENTS; MESOPOROUS SILICA NANOPARTICLES; SERUM-PROTEIN ADSORPTION; WALLED CARBON NANOTUBES; DEPENDENT CELLULAR UPTAKE; IN-VIVO BIODISTRIBUTION; HUMAN BREAST-CANCER; GOLD-NANOPARTICLES; SURFACE-CHEMISTRY;
D O I
10.1021/acs.chemrev.7b00194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This review is a comprehensive description of the past decade of research into understanding how the geometry and size of nanoparticles affect their interaction with biological systems: from single cells to whole organisms. Recently, there has been a great deal of effort to use both the shape and the size of nanoparticles to target specific cellular uptake mechanisms, biodistribution patterns, and pharmacokinetics. While the successes of spherical lipid-based nanoparticles have heralded marked changes in chemotherapy worldwide, the history of asbestos-induced lung disease casts a long shadow over fibrous materials to date. The impact of particle morphology is known to be intertwined with many physicochemical parameters, namely, size, elasticity, surface chemistry, and biopersistence. In this review, we first highlight some of the morphologies observed in nature as well as shapes available to us through synthetic strategies. Following this we discuss attempts to understand the cellular uptake of nanoparticles through various theoretical models before comparing this with observations from in vitro and in vivo experiments. In addition, we consider the impact of nanoparticle shape at different size regimes on targeting, cytotoxicity, and cellular mechanics.
引用
收藏
页码:11476 / 11521
页数:46
相关论文
共 431 条
[11]   Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects [J].
Alkilany, Alaaldin M. ;
Nagaria, Pratik K. ;
Hexel, Cole R. ;
Shaw, Timothy J. ;
Murphy, Catherine J. ;
Wyatt, Michael D. .
SMALL, 2009, 5 (06) :701-708
[12]   Phagocytosis and persistence of Helicobacter pylori [J].
Allen, Lee-Ann H. .
CELLULAR MICROBIOLOGY, 2007, 9 (04) :817-828
[13]   Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy [J].
Amreddy, Narsireddy ;
Muralidharan, Ranganayaki ;
Babu, Anish ;
Mehta, Meghna ;
Johnson, Elyse V. ;
Zhao, Yan D. ;
Munshi, Anupama ;
Ramesh, Rajagopal .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2015, 10 :6773-6788
[14]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[15]  
[Anonymous], 2012, VI TAX, P21
[16]   Impact of particle elasticity on particle-based drug delivery systems [J].
Anselmo, Aaron C. ;
Mitragotri, Samir .
ADVANCED DRUG DELIVERY REVIEWS, 2017, 108 :51-67
[17]   Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages [J].
Arnida ;
Janat-Amsbury, M. M. ;
Ray, A. ;
Peterson, C. M. ;
Ghandehari, H. .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2011, 77 (03) :417-423
[18]   Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model [J].
Astashkina, Anna I. ;
Jones, Clint F. ;
Thiagarajan, Giridhar ;
Kurtzeborn, Kristen ;
Ghandehari, Hamid ;
Brooks, Benjamin D. ;
Grainger, David W. .
BIOMATERIALS, 2014, 35 (24) :6323-6331
[19]   Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines [J].
Astashkina, Anna I. ;
Mann, Brenda K. ;
Prestwich, Glenn D. ;
Grainger, David W. .
BIOMATERIALS, 2012, 33 (18) :4712-4721
[20]   Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier [J].
Baghirov, Habib ;
Karaman, Didem ;
Viitala, Tapani ;
Duchanoy, Alain ;
Lou, Yan-Ru ;
Mamaeva, Veronika ;
Pryazhnikov, Evgeny ;
Khiroug, Leonard ;
Davies, Catharina de Lange ;
Sahlgren, Cecilia ;
Rosenholm, Jessica M. .
PLOS ONE, 2016, 11 (08)