scCancer: a package for automated processing of single-cell RNA-seq data in cancer

被引:38
作者
Guo, Wenbo [1 ]
Wang, Dongfang [2 ,3 ]
Wang, Shicheng [1 ]
Shan, Yiran [1 ]
Liu, Changyi [1 ]
Gu, Jin [1 ]
机构
[1] Tsinghua Univ, Dept Automat, BNRIST Bioinformat Div, Bioinformat,MOE Key Lab Bioinformat, Beijing, Peoples R China
[2] Peking Univ, BIOPIC, Beijing, Peoples R China
[3] Peking Univ, Sch Life Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell RNA-sequencing; cancer; pipeline; EXPRESSION;
D O I
10.1093/bib/bbaa127
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Molecular heterogeneities and complex microenvironments bring great challenges for cancer diagnosis and treatment. Recent advances in single-cell RNA-sequencing (scRNA-seq) technology make it possible to study cancer cell heterogeneities and microenvironments at single-cell transcriptomic level. Here, we develop an R package named scCancer, which focuses on processing and analyzing scRNA-seq data for cancer research. Except basic data processing steps, this package takes several special considerations for cancer-specific features. Firstly, the package introduced comprehensive quality control metrics. Secondly, it used a data-driven machine learning algorithm to accurately identify major cancer microenvironment cell populations. Thirdly, it estimated a malignancy score to classify malignant (cancerous) and non-malignant cells. Then, it analyzed intra-tumor heterogeneities by key cellular phenotypes (such as cell cycle and stemness), gene signatures and cell-cell interactions. Besides, it provided multi-sample data integration analysis with different batch-effect correction strategies. Finally, user-friendly graphic reports were generated for all the analyses. By testing on 56 samples with 433 405 cells in total, we demonstrated its good performance. The package is available at: http://lifeome.net/software/sccanced.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment [J].
Azizi, Elham ;
Carr, Ambrose J. ;
Plitas, George ;
Cornish, Andrew E. ;
Konopacki, Catherine ;
Prabhakaran, Sandhya ;
Nainys, Juozas ;
Wu, Kenmin ;
Kiseliovas, Vaidotas ;
Setty, Manu ;
Choi, Kristy ;
Fromme, Rachel M. ;
Phuong Dao ;
McKenney, Peter T. ;
Wasti, Ruby C. ;
Kadaveru, Krishna ;
Mazutis, Linas ;
Rudensky, Alexander Y. ;
Pe'er, Dana .
CELL, 2018, 174 (05) :1293-+
[2]   scds: computational annotation of doublets in single-cell RNA sequencing data [J].
Bais, Abha S. ;
Kostka, Dennis .
BIOINFORMATICS, 2020, 36 (04) :1150-1158
[3]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[4]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[5]   Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer [J].
Chung, Woosung ;
Eum, Hye Hyeon ;
Lee, Hae-Ock ;
Lee, Kyung-Min ;
Lee, Han-Byoel ;
Kim, Kyu-Tae ;
Ryu, Han Suk ;
Kim, Sangmin ;
Lee, Jeong Eon ;
Park, Yeon Hee ;
Kan, Zhengyan ;
Han, Wonshik ;
Park, Woong-Yang .
NATURE COMMUNICATIONS, 2017, 8
[6]   GSVA: gene set variation analysis for microarray and RNA-Seq data [J].
Haenzelmann, Sonja ;
Castelo, Robert ;
Guinney, Justin .
BMC BIOINFORMATICS, 2013, 14
[7]   A benchmark of batch-effect correction methods for single-cell RNA sequencing data [J].
Hoa Thi Nhu Tran ;
Ang, Kok Siong ;
Chevrier, Marion ;
Zhang, Xiaomeng ;
Lee, Nicole Yee Shin ;
Goh, Michelle ;
Chen, Jinmiao .
GENOME BIOLOGY, 2020, 21 (01)
[8]   Classification of low quality cells from single-cell RNA-seq data [J].
Ilicic, Tomislav ;
Kim, Jong Kyoung ;
Kolodziejczyk, Aleksandra A. ;
Bagger, Frederik Otzen ;
McCarthy, Davis James ;
Marioni, John C. ;
Teichmann, Sarah A. .
GENOME BIOLOGY, 2016, 17
[9]   Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing [J].
Kim, Charissa ;
Gao, Ruli ;
Sei, Emi ;
Brandt, Rachel ;
Hartman, Johan ;
Hatschek, Thomas ;
Crosetto, Nicola ;
Foukakis, Theodoros ;
Navin, Nicholas E. .
CELL, 2018, 173 (04) :879-+
[10]   Fast, sensitive and accurate integration of single-cell data with Harmony [J].
Korsunsky, Ilya ;
Millard, Nghia ;
Fan, Jean ;
Slowikowski, Kamil ;
Zhang, Fan ;
Wei, Kevin ;
Baglaenko, Yuriy ;
Brenner, Michael ;
Loh, Po-ru ;
Raychaudhuri, Soumya .
NATURE METHODS, 2019, 16 (12) :1289-+