The C operator in PT-symmetric quantum field theory transforms as a Lorentz scalar -: art. no. 065010

被引:34
作者
Bender, CM [1 ]
Brandt, SF [1 ]
Chen, JH [1 ]
Wang, QH [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevD.71.065010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A non-Hermitian Hamiltonian has a real positive spectrum and exhibits unitary time evolution if the Hamiltonian possesses an unbroken PT (space-time reflection) symmetry. The proof of unitarity requires the construction of a linear operator called C. It is shown here that C is the complex extension of the intrinsic parity operator and that the C operator transforms under the Lorentz group as a scalar.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 20 条
[1]  
Abarbanel HDI., 1975, Phys. Rep, V21, P119, DOI [10.1016/0370-1573(75)90034-4, DOI 10.1016/0370-1573(75)90034-4]
[2]   The C operator in PT-symmetric quantum theories [J].
Bender, CM ;
Brod, J ;
Refig, A ;
Reuter, ME .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43) :10139-10165
[3]   Scalar quantum field theory with a complex cubic interaction [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2004, 93 (25) :251601-1
[4]   Ghost busting:: PT-symmetric interpretation of the Lee model -: art. no. 025014 [J].
Bender, CM ;
Brandt, SF ;
Chen, JH ;
Wang, QH .
PHYSICAL REVIEW D, 2005, 71 (02) :025014-1
[5]   Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction -: art. no. 025001 [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW D, 2004, 70 (02) :025001-1
[6]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[7]   Semiclassical calculation of the C operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Jones, HF .
PHYSICS LETTERS A, 2004, 328 (2-3) :102-109
[8]   Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Meisinger, PN ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1973-1983
[9]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[10]  
BENDER CM, MATHPH0412001