A Low-Rank Tensor Model for Imputation of Missing Vehicular Traffic Volume

被引:28
作者
Pastor, Giancarlo [1 ]
机构
[1] Aalto Univ, Dept Commun & Networking, Sch Elect Engn, Espoo 02150, Finland
基金
芬兰科学院;
关键词
Crowdsensing; crowdsourcing; data imputation; missing data; tensor completion; transportation systems; MATRIX COMPLETION; DECOMPOSITION;
D O I
10.1109/TVT.2018.2833505
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a low-rank tensor model for vehicular traffic volume data. Contrarily to previous works, we capitalize on a definition of rank, called the tensor train, that is as effective as possible; so that it exploits all the correlation between local structures that are present in the multiple modes, but practical enough that efficient optimization algorithms still hold. From our model, a formulation to find balanced (higher order) tensors is derived. The resulting optimally-balanced tensor improves the imputation accuracy of the tensor train rank. Then, we design specific experiments, which are numerically evaluated using real-world traffic data from Tampere city, Finland. The experimental results are promising, our proposed approach outperforms existing algorithms in both imputation accuracy and, in some instances, computation time.
引用
收藏
页码:8934 / 8938
页数:5
相关论文
共 23 条
[1]   Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train [J].
Bengua, Johann A. ;
Phien, Ho N. ;
Hoang Duong Tuan ;
Do, Minh N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (05) :2466-2479
[2]   Simultaneous Tensor Decomposition and Completion Using Factor Priors [J].
Chen, Yi-Lei ;
Hsu, Chiou-Ting ;
Liao, Hong-Yuan Mark .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) :577-591
[3]  
Du R, 2013, IEEE GLOB COMM CONF, P30, DOI 10.1109/GLOCOM.2013.6831043
[4]   Density-Aware Compressive CrowdSensing [J].
Hao, Xiaohong ;
Xu, Liwen ;
Lane, Nicholas D. ;
Liu, Xin ;
Moscibroda, Thomas .
2017 16TH ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN), 2017, :29-39
[5]   Most Tensor Problems Are NP-Hard [J].
Hillar, Christopher J. ;
Lim, Lek-Heng .
JOURNAL OF THE ACM, 2013, 60 (06)
[6]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[7]  
Latorre J. I., 2005, IMAGE COMPRESS UNPUB
[8]   Tensor Completion for Estimating Missing Values in Visual Data [J].
Liu, Ji ;
Musialski, Przemyslaw ;
Wonka, Peter ;
Ye, Jieping .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :208-220
[9]   TENSOR-TRAIN DECOMPOSITION [J].
Oseledets, I. V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2295-2317
[10]  
Pastor Giancarlo, 2015, 2015 International Symposium on Wireless Communication Systems (ISWCS). Proceedings, P106, DOI 10.1109/ISWCS.2015.7454307