Stolarsky's invariance principle for projective spaces

被引:9
作者
Skriganov, M. M. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, 27 Fontanka, St Petersburg 191023, Russia
关键词
Projective spaces; Geometry of distances; Discrepancies; Spherical functions; Jacobi polynomials; POINT-DISTRIBUTIONS; DISTANCES; DISCREPANCY; SUMS;
D O I
10.1016/j.jco.2019.101428
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that Stolarsky's invariance principle, known for point distributions on the Euclidean spheres, can be extended to the real, complex, and quaternionic projective spaces and the octo-nionic projective plane. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 32 条
[1]  
Alexander J.R., 1997, HDB DISCRETE COMPUTA, P185
[2]   SUM OF DISTANCES BETWEEN POINTS ON A SPHERE [J].
ALEXANDER, R .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (3-4) :443-448
[3]  
[Anonymous], 2000, Special functions
[4]  
[Anonymous], 1972, Spaces of constant curvature
[5]  
Baez JC, 2005, B AM MATH SOC, V42, P213
[6]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[7]  
Bateman H., 1953, HIGHER TRANSCENDENTA, VI
[9]  
Beck J., 1987, CAMBRIDGE TRACTS MAT, V89
[10]  
Besse A. L., 1978, Ergebnisse der Mathematik und ihrer Grenzgebiete, pix+262