A Canonical Trace Associated with Certain Spectral Triples

被引:4
作者
Paycha, Sylvie [1 ]
机构
[1] Math Lab, F-63177 Aubiere, France
关键词
spectral triples; zeta regularisation; noncommutative residue; discrepancies; ELLIPTIC-OPERATORS; GEOMETRY; FORMULA;
D O I
10.3842/SIGMA.2010.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the abstract pseudodifferential setup of Connes and Moscovici, we prove a general formula for the discrepancies of zeta-regularised traces associated with certain spectral triples, and we introduce a canonical trace on operators, whose order lies outside (minus) the dimension spectrum of the spectral triple.
引用
收藏
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[2]  
BERLINE N, 2004, KERNELS DIRAC OPERAT
[3]   Weighted traces on algebras of pseudo-differential operators and geometry on loop groups [J].
Cardona, A ;
Ducourtioux, C ;
Magnot, JP ;
Paycha, S .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2002, 5 (04) :503-540
[4]   THE LOCAL INDEX FORMULA IN NONCOMMUTATIVE GEOMETRY [J].
CONNES, A ;
MOSCOVICI, H .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :174-243
[5]  
DUNFORD N, 1988, LINEAR OPERATORS 3
[6]  
Higson N., 2006, SURVEYS NONCOMMUTATI, V6, P71
[7]  
HORMANDER L, 1983, GRUNDLEHREN MATHEMAT, V256
[8]  
Kassel Ch., 1989, Asterisque, V177, P199
[9]  
Kontsevich M, 1995, PROG MATH, V131, P173
[10]  
KONTSEVICH M, DETERMINANTS ELLIPTI