Unique continuation property for anomalous slow diffusion equation

被引:14
作者
Lin, Ching-Lung [1 ,2 ]
Nakamura, Gen [3 ,4 ]
机构
[1] Natl Cheng Kung Univ, NCTS, Dept Math, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, NCTS, Res Ctr Theoret Sci, Tainan 701, Taiwan
[3] Inha Univ, Dept Math, Inchon, South Korea
[4] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
基金
新加坡国家研究基金会;
关键词
Anomalous diffusion; Carleman estimate; fractional time derivative; unique continuation property; CAUCHY-PROBLEM;
D O I
10.1080/03605302.2015.1135164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Carleman estimate and the unique continuation of solutions for an anomalous diffusion equation with fractional time derivative of order 0< alpha <1 are given. The estimate is derived through some subelliptic estimates for an operator associated to the anomalous diffusion equation using calculus of pseudo-differential operators.
引用
收藏
页码:749 / 758
页数:10
相关论文
共 14 条
[1]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[2]   Spectral analysis of fractional kinetic equations with random data [J].
Anh, VV ;
Leonenko, NN .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) :1349-1387
[3]   Unique continuation property for the anomalous diffusion and its application [J].
Cheng, Jin ;
Lin, Ching-Lung ;
Nakamura, Gen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) :3715-3728
[4]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255
[5]   Multi-dimensional solutions of space-time-fractional diffusion equations [J].
Hanyga, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2018) :429-450
[6]   Dispersive transport of ions in column experiments: An explanation of long-tailed profiles [J].
Hatano, Y ;
Hatano, N .
WATER RESOURCES RESEARCH, 1998, 34 (05) :1027-1033
[7]  
Hormander L., 1994, ANAL LINEAR PARTIAL, V274
[8]  
Kishiro Y., 2009, JAP GEOSC UN M
[9]  
Lu Y., 2000, INT J MECH MATER DES, V3, P329, DOI DOI 10.1007/s10999-007-9039-x
[10]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77