Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids

被引:106
作者
Tamasi, Matthew J. [1 ]
Patel, Roshan A. [2 ]
Borca, Carlos H. [2 ]
Kosuri, Shashank [1 ]
Mugnier, Heloise [1 ]
Upadhya, Rahul [1 ]
Murthy, N. Sanjeeva [1 ]
Webb, Michael A. [2 ]
Gormley, Adam J. [1 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
active learning; Bayesian optimization; combinatorial polymer design; machine learning; polymer-protein conjugates; protein formulations; single-enzyme nanoparticles; PET-RAFT POLYMERIZATION; TEMPERATURE; TRANSITION; SCATTERING;
D O I
10.1002/adma.202201809
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer-protein hybrids are intriguing materials that can bolster protein stability in non-native environments, thereby enhancing their utility in diverse medicinal, commercial, and industrial applications. One stabilization strategy involves designing synthetic random copolymers with compositions attuned to the protein surface, but rational design is complicated by the vast chemical and composition space. Here, a strategy is reported to design protein-stabilizing copolymers based on active machine learning, facilitated by automated material synthesis and characterization platforms. The versatility and robustness of the approach is demonstrated by the successful identification of copolymers that preserve, or even enhance, the activity of three chemically distinct enzymes following exposure to thermal denaturing conditions. Although systematic screening results in mixed success, active learning appropriately identifies unique and effective copolymer chemistries for the stabilization of each enzyme. Overall, this work broadens the capabilities to design fit-for-purpose synthetic copolymers that promote or otherwise manipulate protein activity, with extensions toward the design of robust polymer-protein hybrid materials.
引用
收藏
页数:12
相关论文
共 53 条
[1]  
[Anonymous], 2008, P 22 INT C COMP LING
[2]   Polymer Informatics: Opportunities and Challenges [J].
Audus, Debra J. ;
de Pablo, Juan J. .
ACS MACRO LETTERS, 2017, 6 (10) :1078-1082
[3]   Designing exceptional gas-separation polymer membranes using machine learning [J].
Barnett, J. Wesley ;
Bilchak, Connor R. ;
Wang, Yiwen ;
Benicewicz, Brian C. ;
Murdock, Laura A. ;
Bereau, Tristan ;
Kumar, Sanat K. .
SCIENCE ADVANCES, 2020, 6 (20)
[4]  
Bergstra J., 2011, Adv. Neural Inf. Process. Syst., P2546
[5]  
Borca C., 2022, DATASPACE REPOSITORY, DOI 10.34770/h938-nn26
[6]   All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles [J].
Chapman, Robert ;
Stenzel, Martina H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) :2754-2769
[7]   Structural and conformational stability of horseradish peroxidase: Effect of temperature and pH [J].
Chattopadhyay, K ;
Mazumdar, S .
BIOCHEMISTRY, 2000, 39 (01) :263-270
[8]   Polymer informatics: Current status and critical next steps [J].
Chen, Lihua ;
Pilania, Ghanshyam ;
Batra, Rohit ;
Huan, Tran Doan ;
Kim, Chiho ;
Kuenneth, Christopher ;
Ramprasad, Rampi .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 144
[9]   New frontiers for the materials genome initiative [J].
de Pablo, Juan J. ;
Jackson, Nicholas E. ;
Webb, Michael A. ;
Chen, Long-Qing ;
Moore, Joel E. ;
Morgan, Dane ;
Jacobs, Ryan ;
Pollock, Tresa ;
Schlom, Darrell G. ;
Toberer, Eric S. ;
Analytis, James ;
Dabo, Ismaila ;
DeLongchamp, Dean M. ;
Fiete, Gregory A. ;
Grason, Gregory M. ;
Hautier, Geoffroy ;
Mo, Yifei ;
Rajan, Krishna ;
Reed, Evan J. ;
Rodriguez, Efrain ;
Stevanovic, Vladan ;
Suntivich, Jin ;
Thornton, Katsuyo ;
Zhao, Ji-Cheng .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[10]  
Delre C, 2021, NATURE, V592, P558, DOI 10.1038/s41586-021-03408-3