A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring

被引:40
作者
Zhu, Wenbin [1 ,2 ]
Jia, Shaofeng [1 ,2 ]
Lv, Aifeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
关键词
Soil moisture; TVDI; Land surface temperature; Vegetation index; MODIS; IMPROVING SPATIAL REPRESENTATION; LAND-SURFACE TEMPERATURE; SOUTHERN GREAT-PLAINS; AIR-TEMPERATURE; TRIANGLE METHOD; ENERGY FLUXES; EVAPORATIVE FRACTION; MODIS; EVAPOTRANSPIRATION; DROUGHT;
D O I
10.1016/j.rse.2017.07.032
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents indexes developed from remote sensing observations for continuous soil surface moisture monitoring. The Modified Temperature Vegetation Dryness Index (MTVDI) proposed in our earlier work is developed using a time domain solution method rather than the traditional spatial domain solution method, because of limitations arising from a traditional temperature-vegetation index (TVX) method. In the procedure herein proposed, the MTVDI parameterization scheme is transformed from regional scale to pixel scale, and the boundary conditions defining maximum water stress are determined pixel by pixel using the surface energy balance principle. All the parameters required for the retrieval of MTVDI are pixel specific, thereby avoiding the limitations of the traditional spatial domain solution method. Previous studies demonstrate the applicability of the TVX method with data from only a few days of clear sky conditions. In contrast, our proposed MTVDI is demonstrated using Moderate Resolution Imaging Spectroradiometer (MODIS) products over the course of a full year, and the soil moisture status over the Southern Great Plains (SGP) region is monitored continuously. Finally, the volumetric surface soil water content (theta(nu)) is estimated using a calibration procedure from the MTVDI retrievals. The results show that the accuracy of both MTVDI retrievals and theta(nu) estimates obtained in this work has reached a level comparable with those produced in previous studies. Across all sites, the correlation coefficient (r) between the MTVDI and theta(nu) measurements is 0.60. The values of r, mean absolute error (MAE) and root mean square error (RMSE) for theta(nu) estimates are 0.75, 0.019 m(3) M-3 and 0.025 m(3) m(-3), respectively.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 72 条
[1]   Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Applications [J].
Allen, Richard G. ;
Tasumi, Masahiro ;
Morse, Anthon ;
Trezza, Ricardo ;
Wright, James L. ;
Bastiaanssen, Wim ;
Kramber, William ;
Lorite, Ignacio ;
Robison, Clarence W. .
JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2007, 133 (04) :395-406
[2]   A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation [J].
Anderson, Martha C. ;
Norman, John M. ;
Mecikalski, John R. ;
Otkin, Jason A. ;
Kustas, William P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[3]  
[Anonymous], J HYDROL
[4]  
[Anonymous], 1988, INTRO ENV BIOPHYSICS
[5]  
[Anonymous], 2021, SPIE REV, DOI DOI 10.1117/1.3534910
[6]   Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains [J].
Batra, Namrata ;
Islam, Shafiqul ;
Venturini, Virginia ;
Bisht, Gautam ;
Jiang, Le .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (01) :1-15
[7]   Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days [J].
Bisht, G ;
Venturini, V ;
Islam, S ;
Jiang, L .
REMOTE SENSING OF ENVIRONMENT, 2005, 97 (01) :52-67
[8]   Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study [J].
Bisht, Gautam ;
Bras, Rafael L. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) :1522-1534
[9]   Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall-Runoff Modeling [J].
Brocca, Luca ;
Moramarco, Tommaso ;
Melone, Florisa ;
Wagner, Wolfgang ;
Hasenauer, Stefan ;
Hahn, Sebastian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07) :2542-2555
[10]  
Brutsaert W., 2013, Evaporation into the Atmosphere: Theory, History and Applications