On vaccination controls for the SEIR epidemic model

被引:59
作者
De la Sen, M. [1 ]
Ibeas, A. [2 ]
Alonso-Quesada, S. [1 ]
机构
[1] Univ Basque Country, Fac Sci & Technol, Dept Elect & Elect, Bilbao, Spain
[2] Univ Autonoma Barcelona, Dept Telecommun & Syst Engn, E-08193 Barcelona, Spain
关键词
Epidemic models; Control; SEIR epidemic models; Stability; BEVERTON-HOLT EQUATION; SIR; DYNAMICS; TRANSMISSION; BIFURCATION; POPULATION; STABILITY; DELAYS;
D O I
10.1016/j.cnsns.2011.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a simple continuous-time linear vaccination-based control strategy for a SEIR (susceptible plus infected plus infectious plus removed populations) disease propagation model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among susceptible and infected. The control objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e. susceptible plus infected plus infectious) to asymptotically tend to zero. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2637 / 2658
页数:22
相关论文
共 50 条
[41]   Optimal vaccination strategy of a constrained time-varying SEIR epidemic model [J].
Wang, Xinwei ;
Peng, Haijun ;
Shi, Boyang ;
Jiang, Dianheng ;
Zhang, Sheng ;
Chen, Biaosong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 :37-48
[42]   New Results and Open Questions for SIR-PH Epidemic Models with Linear Birth Rate, Loss of Immunity, Vaccination and Disease and Vaccination Fatalities [J].
Avram, Florin ;
Adenane, Rim ;
Halanay, Andrei .
SYMMETRY-BASEL, 2022, 14 (05)
[43]   AN SEIR EPIDEMIC MODEL WITH TWO INFECTIOUS PATHWAYS [J].
Sangotola, A. O. ;
Akinwumi, O. A. ;
Nuga, O. A. ;
Adebayo, E. A. ;
Adeniji, A. E. ;
Adigun, A. J. .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
[44]   Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination [J].
Abdelaziz, Mahmoud A. M. ;
Ismail, Ahmad Izani ;
Abdullah, Farah A. ;
Mohd, Mohd Hafiz .
CHAOS SOLITONS & FRACTALS, 2020, 140
[45]   STABILITY ANALYSIS OF ROTAVIRUS-MALARIA CO-EPIDEMIC MODEL WITH VACCINATION [J].
Nyang'inja, Rachel A. ;
Lawi, George O. ;
Okongo, Mark O. ;
Orwa, Titus O. .
DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (02) :371-407
[46]   Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay [J].
Wei, Huiming ;
Jiang, Yu ;
Song, Xinyu ;
Su, G. H. ;
Qiu, S. Z. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) :302-312
[47]   Dynamics Analysis and Vaccination-Based Sliding Mode Control of a More Generalized SEIR Epidemic Model [J].
Jiao, Hongmei ;
Shen, Qikun .
IEEE ACCESS, 2020, 8 :174507-174515
[48]   Qualitative analysis of an age-structured SEIR epidemic model with treatment [J].
Safi, Mohammad A. ;
Gumel, Abba B. ;
Elbasha, Elamin H. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) :10627-10642
[49]   Global attractivity and permanence of a delayed SVEIR epidemic model with pulse vaccination and saturation incidence [J].
Jiang, Yu ;
Wei, Huiming ;
Song, Xinyu ;
Mei, Liquan ;
Su, Guanghui ;
Qiu, Suizheng .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (02) :312-321
[50]   ON THE EQUILIBRIUM POINTS, BOUNDEDNESS AND POSITIVITY OF A SVEIRS EPIDEMIC MODEL UNDER CONSTANT REGULAR VACCINATION [J].
De la Sen, M. ;
Alonso-Quesada, S. ;
Ibeas, A. ;
Nistal, R. .
2011 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND TECHNOLOGY (ICMET 2011), 2011, :627-+