On vaccination controls for the SEIR epidemic model

被引:59
作者
De la Sen, M. [1 ]
Ibeas, A. [2 ]
Alonso-Quesada, S. [1 ]
机构
[1] Univ Basque Country, Fac Sci & Technol, Dept Elect & Elect, Bilbao, Spain
[2] Univ Autonoma Barcelona, Dept Telecommun & Syst Engn, E-08193 Barcelona, Spain
关键词
Epidemic models; Control; SEIR epidemic models; Stability; BEVERTON-HOLT EQUATION; SIR; DYNAMICS; TRANSMISSION; BIFURCATION; POPULATION; STABILITY; DELAYS;
D O I
10.1016/j.cnsns.2011.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a simple continuous-time linear vaccination-based control strategy for a SEIR (susceptible plus infected plus infectious plus removed populations) disease propagation model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among susceptible and infected. The control objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e. susceptible plus infected plus infectious) to asymptotically tend to zero. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2637 / 2658
页数:22
相关论文
共 50 条
[31]   A DIFFUSIVE SEIR EPIDEMIC MODEL WITH DISTRIBUTED AND INFINITE DELAY [J].
Tang, Qiu-Lin ;
Wu, Mei-Yun .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2011, 4 (04) :461-472
[32]   THE DYNAMICS OF THE SEIR EPIDEMIC MODEL UNDER THE INFLUENCE OF DELAY [J].
Hussien, Reem Mudar ;
Naji, Raid Kamel .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
[33]   Dynamical Behavior of SEIR-SVS Epidemic Models with Nonlinear Incidence and Vaccination [J].
Feng, Xiao-mei ;
Liu, Li-li ;
Zhang, Feng-qin .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (02) :282-303
[34]   On the Equilibrium Points, Boundedness and Positivity of a Sveirs Epidemic Model under Constant Regular Constrained Vaccination [J].
De la Sen, Manuel ;
Ibeas, Asier ;
Alonso-Quesada, Santiago ;
Nistal, Raul .
INFORMATICA, 2011, 22 (03) :339-370
[35]   Global Dynamics of an SEIR Model with the Age of Infection and Vaccination [J].
Li, Huaixing ;
Wang, Jiaoyan .
MATHEMATICS, 2021, 9 (18)
[36]   On a Discrete SEIR Epidemic Model with Two-Doses Delayed Feedback Vaccination Control on the Susceptible [J].
De la Sen, Manuel ;
Alonso-Quesada, Santiago ;
Ibeas, Asier ;
Nistal, Raul .
VACCINES, 2021, 9 (04)
[37]   An observer-based vaccination control law for an SEIR epidemic model based on feedback linearization techniques for nonlinear systems [J].
S Alonso-Quesada ;
M De la Sen ;
RP Agarwal ;
A Ibeas .
Advances in Difference Equations, 2012
[38]   On the nonlinear stability of an epidemic SEIR reaction-diffusion model [J].
Capone F. ;
de Cataldis V. ;
de Luca R. .
Ricerche di Matematica, 2013, 62 (1) :161-181
[39]   Optimal Control for an SEIR Epidemic Model with Nonlinear Incidence Rate [J].
Grigorieva, Ellina ;
Khailov, Evgenii ;
Korobeinikov, Andrei .
STUDIES IN APPLIED MATHEMATICS, 2018, 141 (03) :353-398
[40]   A SEIR Epidemic Model with Infectious Population Measurement [J].
De la Sen, M. ;
Alonso-Quesada, S. ;
Ibeas, A. .
WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL III, 2011, :2685-2689