Using a bifunctional polymer for the functionalization of Fe3O4 nanoparticles

被引:16
作者
Zhang, Quan [2 ]
Luan, Liang [2 ]
Feng, Siliang [2 ]
Yan, Husheng [1 ]
Liu, Keliang [2 ]
机构
[1] Nankai Univ, Key Lab Funct Polymer Mat, Minist Educ, Inst Polymer Chem, Tianjin 300071, Peoples R China
[2] Beijing Inst Pharmacol & Toxicol, Beijing 100850, Peoples R China
基金
中国国家自然科学基金;
关键词
Bifunctional polymer; Functionalization of nanoparticles; Fe3O4; Nuclear delivery; Tat peptide; IRON-OXIDE NANOPARTICLES; MAGNETIC-RESONANCE DETECTION; SUPERPARAMAGNETIC NANOPARTICLES; DRUG-DELIVERY; TAT PEPTIDE; ANNEXIN-V; CELLS; PROTEIN; SURFACE; NANOCRYSTALS;
D O I
10.1016/j.reactfunctpolym.2012.01.003
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A bifunctional maleimido-tetra(ethylene glycol)-poly(glycerol monoacrylate) (MAL-TEG-PGA) polymer was synthesized and used as a linker to couple functional biomolecules to iron oxide nanoparticles. The cell-penetrating peptide Tat was chosen as a model ligand and successfully conjugated to the surface of Fe3O4 nanoparticles using MAL-TEG-PGA. The Tat-conjugated Fe3O4 nanoparticles can be prepared simply by applying the linker to the iron oxide nanoparticles and then coupling the Tat peptide to the maleimide terminus or by coating the nanoparticles with a pre-coupled linker. Cell-uptake studies demonstrated that the Tat peptide was an efficient functional biomolecule to translocate iron oxide nanopartides into the cell nucleus. Tat-conjugated nanoparticles thus prepared may be useful for drug or gene delivery. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 40 条
[1]   Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line [J].
Bhattarai, Shanta Raj ;
Kim, Sun Young ;
Jang, Kyu Yun ;
Lee, Ki Chang ;
Yi, Ho Keun ;
Lee, Dae Yeol ;
Kim, Hak Yong ;
Hwang, Pyoung Han .
JOURNAL OF VIROLOGICAL METHODS, 2008, 147 (02) :213-218
[2]   Biofunctionalization of magnetic poly(glycidyl methacrylate) microspheres with protein A: Characterization and cellular interactions [J].
Cakmak, Soner ;
Guemuesderelioglu, Menemse ;
Denizli, Adil .
REACTIVE & FUNCTIONAL POLYMERS, 2009, 69 (08) :586-593
[3]   A multimodal targeting nanoparticle for selectively labeling T cells [J].
Gunn, Jonathan ;
Wallen, Herschel ;
Veiseh, Omid ;
Sun, Conroy ;
Fang, Chen ;
Cao, Jianhong ;
Yee, Cassian ;
Zhang, Miqin .
SMALL, 2008, 4 (06) :712-715
[4]   Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery [J].
Guo, Miao ;
Que, Chailu ;
Wang, Chenhong ;
Liu, Xiaozhou ;
Yan, Husheng ;
Liu, Keliang .
BIOMATERIALS, 2011, 32 (01) :185-194
[5]   Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J].
Gupta, AK ;
Gupta, M .
BIOMATERIALS, 2005, 26 (18) :3995-4021
[6]   Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors [J].
Gupta, AK ;
Curtis, ASG .
BIOMATERIALS, 2004, 25 (15) :3029-3040
[7]   Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer [J].
Hu, Fengqin ;
Wei, Li ;
Zhou, Zhuan ;
Ran, Yuliang ;
Li, Zhen ;
Gao, Mingyuan .
ADVANCED MATERIALS, 2006, 18 (19) :2553-+
[8]   In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals [J].
Huh, YM ;
Jun, YW ;
Song, HT ;
Kim, S ;
Choi, JS ;
Lee, JH ;
Yoon, S ;
Kim, KS ;
Shin, JS ;
Suh, JS ;
Cheon, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (35) :12387-12391
[9]   Application of gelatin-coated magnetic particles for isolation of genomic DNA from bacterial cells [J].
Intorasoot, Sorasak ;
Srirung, Rujira ;
Intorasoot, Amornrat ;
Ngamratanapaiboon, Surachai .
ANALYTICAL BIOCHEMISTRY, 2009, 386 (02) :291-292
[10]   High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates [J].
Josephson, L ;
Tung, CH ;
Moore, A ;
Weissleder, R .
BIOCONJUGATE CHEMISTRY, 1999, 10 (02) :186-191