Modeling of a hazelnut dryer assisted heat pump by using artificial neural networks

被引:43
作者
Ceylan, Ilhan [1 ]
Aktas, Mustafa [2 ]
机构
[1] Karabuk Univ, Mech Educ Dept, Tech Educ Fac, Karabuk, Turkey
[2] Gazi Univ, Mech Educ Dept, Tech Educ Fac, TR-06503 Ankara, Turkey
关键词
heat pump dryer; hazelnut; artificial neural networks;
D O I
10.1016/j.apenergy.2007.10.013
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The artificial neural network (ANN) approach is generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. In this paper, an application of the ANN has been presented for a PID controlled heat pump dryer. In PID controlled heat pump dryer, air velocity changed according to the temperature value which is set in process control device. Heat pump dryer was tested drying of hazelnut at 40 degrees C, 45 degrees C and 50 degrees C drying air temperatures. By training the experiment results with ANN, drying air velocities, moisture content of hazelnuts and total drying time were predicted for 42 degrees C,44 degrees C, 46 degrees C and 48 degrees C drying air temperatures. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:841 / 854
页数:14
相关论文
共 50 条
[31]   An artificial intelligence approach to inverse heat transfer modeling of an irradiative dryer [J].
Mirsephai, Ali ;
Mohammadzaheri, Morteza ;
Chen, Lei ;
O'Neill, Brian .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (01) :40-45
[32]   Latent heat and sensible heat flux simulation in maize using artificial neural networks [J].
Safa, Babak ;
Arkebauer, Timothy J. ;
Zhu, Qiuming ;
Suyker, Andy ;
Irmak, Suat .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 154 :155-164
[33]   A Numerical Modeling of Nonlinear Load Behavior using Artificial Neural Networks [J].
Panoiu, Manuela ;
Ghiormez, Loredana ;
Panoiu, Caius ;
Iordan, Anca .
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 :1337-1340
[34]   Modeling photosynthetically oxygenated biodegradation processes using artificial neural networks [J].
Arranz, A. ;
Bordel, S. ;
Villaverde, S. ;
Zamarreno, J. M. ;
Guieysse, B. ;
Munoz, R. .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 155 (1-2) :51-57
[35]   NONLINEAR MODELING OF CHROMIUM TANNING SOLUTION USING ARTIFICIAL NEURAL NETWORKS [J].
MARJONIEMI, M .
APPLIED SPECTROSCOPY, 1994, 48 (01) :21-26
[36]   Recent Advances in the Modeling of Ionic Liquids Using Artificial Neural Networks [J].
Racki, Adrian ;
Paduszynski, Kamil .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (07) :3161-3175
[37]   Modeling sterilization process of canned foods using artificial neural networks [J].
Gonçalves, EC ;
Minim, LA ;
Coimbra, JSR ;
Minim, VPR .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2005, 44 (12) :1269-1276
[38]   Modeling of reflectance properties of ZnO film using artificial neural networks [J].
Yuksek, A. G. ;
Tuzemen, E. Senadim ;
Elagoz, S. .
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (11-12) :1615-1628
[39]   Modeling the Biocatalytic Method of Lipid Extraction Using Artificial Neural Networks [J].
Shafrai, Anton V. ;
Prosekov, Alexander Yu. ;
Vechtomova, Elena A. .
INFORMATION, 2023, 14 (08)
[40]   DYNAMIC SYSTEMS MODELING USING ARTIFICIAL NEURAL NETWORKS FOR AGRICULTURAL MACHINES [J].
Dorokhov, A. S. ;
Sibirev, A., V ;
Aksenov, A. G. .
INMATEH-AGRICULTURAL ENGINEERING, 2019, 58 (02) :63-74