Particle swarms and population diversity

被引:75
作者
Blackwell, TM [1 ]
机构
[1] Univ London Goldsmiths Coll, Dept Comp, London SE14 6NW, England
关键词
Particle Swarm Optimisation; Charged Particle; Particle Swarm; Particle Swarm Optimisation Algorithm; Convergence Factor;
D O I
10.1007/s00500-004-0420-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The optimisation of dynamic optima can be a! difficult problem for evolutionary algorithms due to diversity loss. However, another population based search technique, particle swarm optimisation, is well suited to this problem. If some or all of the particles are 'charged', an extended swarm can be maintained, and dynamic optimisation is possible with a simple algorithm. Charged particle swarms are based on an electrostatic analogy-inter-particle repulsions enable charged particles to swarm around a nucleus of neutral particles. This paper proposes a diversity measure and examines its time development for charged and neutral swarms. These results facilitate predictions for optima tracking given knowledge of the amount of dynamism. A number of experiments test these predictions and demonstrate the efficacy of charged particle swarms in a simple dynamic environment.
引用
收藏
页码:793 / 802
页数:10
相关论文
共 11 条
  • [1] Blackwell T, 2002, P GEN EV COMP C, P19
  • [2] Blackwell TM, 2003, LECT NOTES COMPUT SC, V2723, P1
  • [3] Branke J., 2001, EVOLUTIONARY OPTIMIZ
  • [4] BRANKE J, 2003, GECCO WORKSH EV ALG, P2
  • [5] Carlisle A, 2000, IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, P429
  • [6] The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    Clerc, M
    Kennedy, J
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) : 58 - 73
  • [7] Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
  • [8] Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P94, DOI 10.1109/CEC.2001.934376
  • [9] Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279
  • [10] Hu XH, 2002, IEEE C EVOL COMPUTAT, P1666, DOI 10.1109/CEC.2002.1004492