Identification of QTL and genes for pod number in soybean by linkage analysis and genome-wide association studies

被引:23
作者
Song, Jie [1 ]
Sun, Xu [1 ]
Zhang, Kaixin [1 ]
Liu, Shulin [2 ]
Wang, Jiajing [1 ]
Yang, Chang [1 ]
Jiang, Sitong [1 ]
Siyal, Mahfishan [1 ]
Li, Xiyu [1 ]
Qi, Zhongying [1 ]
Wang, Yue [1 ]
Tian, Xiaocui [1 ]
Fang, Yanlong [1 ]
Tian, Zhixi [2 ]
Li, Wen-Xia [1 ]
Ning, Hailong [1 ]
机构
[1] Northeast Agr Univ, Key Lab Soybean Biol, Key Lab Soybean Biol & Breeding Genet, Minist Agr,Minist Educ, Harbin, Heilongjiang, Peoples R China
[2] Chinese Acad Sci, State Key Lab Plant Cell & Chromosome Engn, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
关键词
Soybean; Pod number; Vertical distribution; Multi-locus GWAS; Linkage analysis; FW-RILs; SEED; POPULATION; TRAITS; SOFTWARE; FLOWER; YIELD; COI1; WILD;
D O I
10.1007/s11032-020-01140-w
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Pod number is an important component of yield in soybean (Glycine max(L.) Merr.), and pods are unevenly distributed in the upper, middle and lower parts of the plant. Here, linkage analysis combined with genome-wide association study (GWAS) was used to identify 20 pod number-related traits in four-way recombinant inbred lines (FW-RILs) derived from crosses between the four soybean varieties (Kenfeng 14 x Kenfeng 15) x (Heinong 48 x Kenfeng 19). The results show that pod number-related traits are highly influenced by genetic factors, while the environment plays only a minor role. A total of 602 QTLs were identified, of which 52 were detected in multiple environments (over two environments). In addition, GWAS detected 26 common QTNs (identified by multiple methods or environments) in the QTL intervals. Based on gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 11 potential candidate genes were identified that likely involved the growth and development of soybean pods. These findings will help elucidate the genetic basis of pod number traits.
引用
收藏
页数:14
相关论文
共 57 条
[21]   Mapping of QTL associated with chilling tolerance during reproductive growth in soybean [J].
Funatsuki, H ;
Kawaguchi, K ;
Matsuba, S ;
Sato, Y ;
Ishimoto, M .
THEORETICAL AND APPLIED GENETICS, 2005, 111 (05) :851-861
[22]   Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis [J].
Griffiths, Jayne ;
Murase, Kohji ;
Rieu, Ivo ;
Zentella, Rodolfo ;
Zhang, Zhong-Lin ;
Powers, Stephen J. ;
Gong, Fan ;
Phillips, Andrew L. ;
Hedden, Peter ;
Sun, Tai-ping ;
Thomas, Stephen G. .
PLANT CELL, 2006, 18 (12) :3399-3414
[23]   Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population [J].
Han, Zhongmin ;
Hu, Gang ;
Liu, Hua ;
Liang, Famao ;
Yang, Lin ;
Zhao, Hu ;
Zhang, Qinghua ;
Li, Zhixin ;
Zhang, Qifa ;
Xing, Yongzhong .
THEORETICAL AND APPLIED GENETICS, 2020, 133 (01) :59-71
[24]   GID1-mediated gibberellin signaling in plants [J].
Hirano, Ko ;
Ueguchi-Tanaka, Miyako ;
Matsuoka, Makoto .
TRENDS IN PLANT SCIENCE, 2008, 13 (04) :192-199
[25]   Fine mapping of the awn gene on chromosome 4 in rice by association and linkage analyses [J].
Hu GuangLong ;
Zhang DongLing ;
Pan HuiQiao ;
Li Ben ;
Wu JianTao ;
Zhou XueYa ;
Zhang QunYuan ;
Zhou Lei ;
Yao GuoXin ;
Li JunZhou ;
Li JinJie ;
Zhang HongLiang ;
Li ZiChao .
CHINESE SCIENCE BULLETIN, 2011, 56 (09) :835-839
[26]   A multiparent advanced generation inter-cross population for genetic analysis in wheat [J].
Huang, Bevan E. ;
George, Andrew W. ;
Forrest, Kerrie L. ;
Kilian, Andrzej ;
Hayden, Matthew J. ;
Morell, Matthew K. ;
Cavanagh, Colin R. .
PLANT BIOTECHNOLOGY JOURNAL, 2012, 10 (07) :826-839
[27]   A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.) [J].
Huynh, Bao-Lam ;
Ehlers, Jeffrey D. ;
Huang, Bevan Emma ;
Munoz-Amatriain, Maria ;
Lonardi, Stefano ;
Santos, Jansen R. P. ;
Ndeve, Arsenio ;
Batieno, Benoit J. ;
Boukar, Ousmane ;
Cisse, Ndiaga ;
Drabo, Issa ;
Fatokun, Christian ;
Kusi, Francis ;
Agyare, Richard Y. ;
Guo, Yi-Ning ;
Herniter, Ira ;
Lo, Sassoum ;
Wanamaker, Steve I. ;
Xu, Shizhong ;
Close, Timothy J. ;
Roberts, Philip A. .
PLANT JOURNAL, 2018, 93 (06) :1129-1142
[28]   A genome-wide association study of seed protein and oil content in soybean [J].
Hwang, Eun-Young ;
Song, Qijian ;
Jia, Gaofeng ;
Specht, James E. ;
Hyten, David L. ;
Costa, Jose ;
Cregan, Perry B. .
BMC GENOMICS, 2014, 15
[29]   Utilization of Interspecific High-Density Genetic Map of RIL Population for the QTL Detection and Candidate Gene Mining for 100-Seed Weight in Soybean [J].
Karikari, Benjamin ;
Chen, Shixuan ;
Xiao, Yuntao ;
Chang, Fangguo ;
Zhou, Yilan ;
Kong, Jiejie ;
Bhat, Javaid Akhter ;
Zhao, Tuanjie .
FRONTIERS IN PLANT SCIENCE, 2019, 10
[30]   QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields [J].
Kuroda, Yosuke ;
Kaga, Akito ;
Tomooka, Norihiko ;
Yano, Hiroshi ;
Takada, Yoshitake ;
Kato, Shin ;
Vaughan, Duncan .
ECOLOGY AND EVOLUTION, 2013, 3 (07) :2150-2168