Multitask Deep Learning for Edge Intelligence Video Surveillance System

被引:4
作者
Li, Jiawei [1 ,2 ]
Zheng, Zhilong [2 ]
Li, Yiming [1 ]
Ma, Rubao [3 ]
Xia, Shu-Tao [1 ,4 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[3] Bright Dream Robot Co Ltd, Country Garden Grp, Foshan, Peoples R China
[4] Peng Cheng Lab, PCL Res Ctr Networks & Commun, Shenzhen, Peoples R China
来源
2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1 | 2020年
基金
中国国家自然科学基金;
关键词
Intelligent video surveillance system; edge computing; deep learning; multitask learning; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/INDIN45582.2020.9442166
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
From the mutual empowerment of two high-speed development technologies: artificial intelligence and edge computing, we propose a tailored Edge Intelligent Video Surveillance (EIVS) system. It is a scalable edge computing architecture and uses multitask deep learning for relevant computer vision tasks. Due to the potential application of different surveillance devices are widely different, we adopt a smart IoT module to normalize the video data of different cameras, thus the EIVS system can conveniently found proper data for a specific task. In addition, the deep learning models can be deployed at every EIVS nodes, to make computer vision tasks on the normalized data. Meanwhile, due to the training and deploying of deep learning model are usually separated, for the related tasks in the same scenario, we propose to collaboratively train the depth learning models in a multitask paradigm on the cloud server. The simulation results on the publicly available datasets show that the system continuously supports intelligent monitoring tasks, has good scalability, and can improve performance through multitask learning.
引用
收藏
页码:579 / 584
页数:6
相关论文
共 40 条
[11]   A deep neural network for real-time detection of falling humans in naturally occurring scenes [J].
Fan, Yaxiang ;
Levine, Martin D. ;
Wen, Gongjian ;
Qiu, Shaohua .
NEUROCOMPUTING, 2017, 260 :43-58
[12]   Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach [J].
Han, Hu ;
Jain, Anil K. ;
Wang, Fang ;
Shan, Shiguang ;
Chen, Xilin .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (11) :2597-2609
[13]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[14]   Deep Learning for Emotion Recognition on Small Datasets Using Transfer Learning [J].
Hong-Wei Ng ;
Viet Dung Nguyen ;
Vonikakis, Vassilios ;
Winkler, Stefan .
ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, :443-449
[15]   Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning [J].
Huang, Wenhao ;
Song, Guojie ;
Hong, Haikun ;
Xie, Kunqing .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (05) :2191-2201
[16]   VideoEdge: Processing Camera Streams using Hierarchical Clusters [J].
Hung, Chien-Chun ;
Ananthanarayanan, Ganesh ;
Bodik, Peter ;
Golubchik, Leana ;
Yu, Minlan ;
Bahl, Paramvir ;
Philipose, Matthai .
2018 THIRD IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC), 2018, :115-131
[17]   Chameleon: Scalable Adaptation of Video Analytics [J].
Jiang, Junchen ;
Ananthanarayanan, Ganesh ;
Bodik, Peter ;
Sen, Siddhartha ;
Stoica, Ion .
PROCEEDINGS OF THE 2018 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION (SIGCOMM '18), 2018, :253-266
[18]  
Jiawei Li, 2020, ICMR '20: Proceedings of the 2020 International Conference on Multimedia Retrieval, P464, DOI 10.1145/3372278.3390702
[19]  
Kangin Dmitry, 2016, THESIS LANCASTER U
[20]   Distributed Video Surveillance Using Smart Cameras [J].
Kavalionak, Hanna ;
Gennaro, Claudio ;
Amato, Giuseppe ;
Vairo, Claudio ;
Perciante, Costantino ;
Meghini, Carlo ;
Falchi, Fabrizio .
JOURNAL OF GRID COMPUTING, 2019, 17 (01) :59-77