Improving the ranking quality of medical image retrieval using a genetic feature selection method

被引:72
作者
da Silva, Sergio Francisco [1 ]
Ribeiro, Marcela Xavier [3 ]
Batista Neto, Joao do E. S. [2 ]
Traina-, Caetano, Jr.
Traina, Agma J. M.
机构
[1] Univ Sao Paulo, Dept Comp Sci, Math & Comp Sci Inst, Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, ICMC Inst Math & Comp Sci, Sao Carlos, SP, Brazil
[3] Univ Fed Sao Carlos, Dept Comp Sci, BR-13560 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Feature selection; Genetic algorithms; Ranking quality; Medical image retrieval; INFORMATION-RETRIEVAL; RELEVANCE FEEDBACK; QUERY OPTIMIZATION; FITNESS FUNCTIONS; ALGORITHMS; CLASSIFICATION; REDUNDANCY; DISCOVERY; DIAGNOSIS; CRITERIA;
D O I
10.1016/j.dss.2011.01.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we take advantage of single-valued functions that evaluate rankings to develop a family of feature selection methods based on the genetic algorithm approach, tailored to improve the accuracy of content-based image retrieval systems. Experiments on three image datasets, comprising images of breast and lung nodules, showed that developing functions to evaluate the ranking quality allows improving retrieval performance. This approach produces significantly better results than those of other fitness function approaches, such as the traditional wrapper and than filter feature selection algorithms. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:810 / 820
页数:11
相关论文
共 42 条
[1]   Automated storage and retrieval of thin-section CT images to assist diagnosis: System description and preliminary assessment [J].
Aisen, AM ;
Broderick, LS ;
Winer-Muram, H ;
Brodley, CE ;
Kak, AC ;
Pavlopoulou, C ;
Dy, J ;
Shyu, CR ;
Marchiori, A .
RADIOLOGY, 2003, 228 (01) :265-270
[2]  
[Anonymous], 1989, CHOICE REV ONLINE, DOI DOI 10.5860/CHOICE.27-0936
[3]  
[Anonymous], 2004, Wiley InterScience electronic collection.
[4]   A feature selection technique for generation of classification committees and its application to categorization of laryngeal images [J].
Bacauskiene, M. ;
Verikas, A. ;
Gelzinis, A. ;
Valincius, D. .
PATTERN RECOGNITION, 2009, 42 (05) :645-654
[5]  
Baeza-Yates R, 1999, MODERN INFORM RETRIE, V463
[6]  
Bartell BT, 1998, J AM SOC INFORM SCI, V49, P742, DOI 10.1002/(SICI)1097-4571(199806)49:8<742::AID-ASI8>3.0.CO
[7]  
2-H
[8]  
Beyer K, 1999, LECT NOTES COMPUT SC, V1540, P217
[9]   A review on the application of evolutionary computation to information retrieval [J].
Cordón, O ;
Herrera-Viedma, E ;
López-Pujalte, C ;
Luque, M ;
Zarco, C .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2003, 34 (2-3) :241-264
[10]   Unsupervised feature selection applied to content-based retrieval of lung images [J].
Dy, JG ;
Brodley, CE ;
Kak, A ;
Broderick, LS ;
Aisen, AM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (03) :373-378