Approximating optimal parameters for generalized preconditioned Hermitian and skew-Hermitian splitting (GPHSS) method

被引:9
作者
Dehghan, Mehdi [1 ]
Shirilord, Akbar [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran Polytech, 424 Hafez Ave, Tehran 15914, Iran
关键词
Optimal parameter; Complex matrix; Symmetric semi-positive definite matrix; GPHSS method; Trace; Solving linear systems with complex symmetric semi-positive definite coefficient matrix; SYSTEMS;
D O I
10.1007/s40314-021-01747-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized preconditioned Hermitian and skew-Hermitian splitting (GPHSS) method is a numerical method for obtaining the solution of linear systems with complex symmetric semi-positive definite coefficient matrix. This method relates to the two relaxed parameters that should be chosen properly and is a hard task mathematically. In this study, based on the work in [J. Comput. Appl. Math. 255, 142-149 (2014)] that investigates the optimum parameter for the HSS method, we expand the results of this paper for computing optimum parameters for GPHSS method. We will show that these parameters are obtained by minimizing a function of two variables. Finally in the numerical section, we study some test problems to support the theoretical discussion.
引用
收藏
页数:23
相关论文
共 34 条
[1]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[2]  
Axelsson O, 2000, NUMER LINEAR ALGEBR, V7, P197, DOI 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO
[3]  
2-S
[4]  
Bai ZZ, 2006, MATH COMPUT, V76, P287
[5]   Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices [J].
Bai, Zhong-Zhi ;
Golub, Gene H. ;
Li, Chi-Kwong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) :583-603
[6]   Modified HSS iteration methods for a class of complex symmetric linear systems [J].
Bai, Zhong-Zhi ;
Benzi, Michele ;
Chen, Fang .
COMPUTING, 2010, 87 (3-4) :93-111
[7]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[8]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[9]   Iterative Tikhonov regularization of tensor equations based on the Arnoldi process and some of its generalizations [J].
Beik, Fatemeh Panjeh Ali ;
Najafi-Kalyani, Mehdi ;
Reichel, Lothar .
APPLIED NUMERICAL MATHEMATICS, 2020, 151 :425-447
[10]   Weighted versions of Gl-FOM and Gl-GMRES for solving general coupled linear matrix equations [J].
Beik, Fatemeh Panjeh Ali ;
Salkuyeh, Davod Khojasteh .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (10) :1606-1618