C*-algebras of generalized Hecke pairs

被引:1
作者
Amini, Massoud [1 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Math, Tehran, Iran
关键词
generalized Hecke pair; covariant representation; hypergroup; SPACES;
D O I
10.2478/s12175-011-0034-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the concept of Hecke pairs and study representations of the corresponding C*-algebra. We introduce the notions of covariant pairs and matrix unit pairs of representations in this general setting and show that covariant pairs are exactly faithful matrix unit pairs.
引用
收藏
页码:645 / 652
页数:8
相关论文
共 50 条
[41]   FREDHOLM MODULES OVER GRAPH C*-ALGEBRAS [J].
Crisp, Tyrone .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (02) :302-315
[42]   A New Light on Nets of C*-Algebras and Their Representations [J].
Giuseppe Ruzzi ;
Ezio Vasselli .
Communications in Mathematical Physics, 2012, 312 :655-694
[43]   Lipschitzness of *-homomorphisms between C*-metric algebras [J].
Wu Wei .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (11) :2473-2485
[44]   Uniformly recurrent subgroups and simple C*-algebras [J].
Elek, Gabor .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (06) :1657-1689
[45]   Approximate (α, β, γ)-derivation on random Lie C*-algebras [J].
Saadati, Reza ;
Rassias, Themistocles M. ;
Cho, Yeol Je .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (01) :1-10
[46]   Crossed products of C*-algebras for singular actions [J].
Grundling, Hendrik ;
Neeb, Karl-Hermann .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) :5199-5269
[47]   CHAIN CONDITIONS FOR C*-ALGEBRAS COMING FROM HILBERT C*-MODULES [J].
Pourgholamhossein, Mahmood ;
Rouzbehani, Mohammad ;
Amini, Massoud .
ACTA MATHEMATICA SCIENTIA, 2018, 38 (04) :1163-1173
[48]   Generalized MICZ-Kepler system, duality, polynomial, and deformed oscillator algebras [J].
Marquette, Ian .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[49]   Vortex filament on symmetric Lie algebras and generalized bi-Schrodinger flows [J].
Ding, Qing ;
Wang, Youde .
MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) :167-193
[50]   A global theory of algebras of generalized functions. II. Tensor distributions [J].
Grosser, Michael ;
Kunzinger, Michael ;
Steinbauer, Roland ;
Vickers, James A. .
NEW YORK JOURNAL OF MATHEMATICS, 2012, 18 :139-199