Tribocorrosion Behavior of NiTi Biomedical Alloy Processed by an Additive Manufacturing Laser Beam Directed Energy Deposition Technique

被引:17
作者
Buciumeanu, Mihaela [1 ]
Bagheri, Allen [2 ]
Silva, Filipe Samuel [3 ]
Henriques, Bruno [3 ,4 ]
Lasagni, Andres F. [5 ,6 ]
Shamsaei, Nima [7 ,8 ]
机构
[1] Dunarea de Jos Univ Galati, Dept Mech Engn, Fac Engn, Domneasca 47, Galati 800008, Romania
[2] Mississippi State Univ, Ctr Adv Vehicular Syst CAVS, Starkville, MS 39762 USA
[3] Univ Minho, Ctr Microelectro Mech Syst CMEMS UMinho, Campus Azurem, P-4800058 Guimaraes, Portugal
[4] Fed Univ Santa Catarina UFSC, Lab Ceram & Composite Mat CERMAT, Campus Trindade, BR-88040900 Florianopolis, SC, Brazil
[5] Tech Univ Dresden, Inst Mfg Technol, D-01062 Dresden, Germany
[6] Fraunhofer Inst Werkstoff & Strahltech IWS, Winterbergstr 28, D-01277 Dresden, Germany
[7] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[8] Auburn Univ, Natl Ctr Addit Mfg Excellence NCAME, Auburn, AL 36849 USA
关键词
NiTi; Ti-6Al-4V; laser engineered net shaping (LENS); tribocorrosion; SHAPE-MEMORY ALLOYS; CORROSION BEHAVIOR; WEAR-RESISTANCE; TRIBOLOGICAL BEHAVIOR; FATIGUE BEHAVIOR; TRIBO-CORROSION; HEAT-TREATMENT; MEAN STRAIN; MICROSTRUCTURE; TRANSFORMATION;
D O I
10.3390/ma15020691
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The purpose of the present study was to experimentally assess the synergistic effects of wear and corrosion on NiTi alloy in comparison with Ti-6Al-4V alloy, the most extensively used titanium alloy in biomedical applications. Both alloys were processed by an additive manufacturing laser beam directed energy deposition (LB-DED) technique, namely laser engineered net shaping (LENS), and analyzed via tribocorrosion tests by using the ball-on-plate configuration. The tests were carried out in phosphate buffered saline solution at 37 degrees C under open circuit potential (OCP) to simulate the body environment and temperature. The synergistic effect of wear and corrosion was found to result in an improved wear resistance in both materials. It was also observed that, for the process parameters used, the LB-DED NiTi alloy exhibits a lower tendency to corrosion as compared to the LB-DED Ti-6Al-4V alloy. It is expected that, during the service life as an implant, the NiTi alloy is less susceptible to the metallic ions release when compared with the Ti-6Al-4V alloy.
引用
收藏
页数:15
相关论文
共 58 条
[1]   Tribological behavior of NiTi alloy against 52100 steel and WC at elevated temperatures [J].
Abedini, M. ;
Ghasemi, H. M. ;
Ahmadabadi, M. Nili .
MATERIALS CHARACTERIZATION, 2010, 61 (07) :689-695
[2]   Tribological behavior of NiTi alloy in martensitic and austenitic states [J].
Abedini, M. ;
Ghasemi, H. M. ;
Ahmadabadi, M. Nili .
MATERIALS & DESIGN, 2009, 30 (10) :4493-4497
[3]  
Akhras G., 2000, CANADIAN MILITARY J, V1, P25
[4]   Design, modeling and experimental evaluation of a minimally invasive cage for spinal fusion surgery utilizing superelastic Nitinol hinges [J].
Andani, Masood Taheri ;
Anderson, Walter ;
Elahinia, Mohammad .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (06) :631-638
[5]  
[Anonymous], 2015, ASME INT MECH ENG C
[6]   Fatigue behavior and cyclic deformation of additive manufactured NiTi [J].
Bagheri, Allen ;
Mahtabi, Mohammad J. ;
Shamsaei, Nima .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 252 :440-453
[7]   Porous NiTi for bone implants: A review [J].
Bansiddhi, A. ;
Sargeant, T. D. ;
Stupp, S. I. ;
Dunand, D. C. .
ACTA BIOMATERIALIA, 2008, 4 (04) :773-782
[8]   Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting [J].
Bartolomeu, F. ;
Buciumeanu, M. ;
Pinto, E. ;
Alves, N. ;
Silva, F. S. ;
Carvalho, O. ;
Miranda, G. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2017, 27 (04) :829-838
[9]   A STUDY OF NICKEL ALLERGY [J].
BLANCODALMAU, L ;
CARRASQUILLOALBERTY, H ;
SILVAPARRA, J .
JOURNAL OF PROSTHETIC DENTISTRY, 1984, 52 (01) :116-119
[10]   Powder metallurgical fabrication processes for NiTi shape memory alloy parts [J].
Bram, M ;
Ahmad-Khanlou, A ;
Heckmann, A ;
Fuchs, B ;
Buchkremer, HP ;
Stöver, D .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 337 (1-2) :254-263