Effect of Disjoining Pressure on Surface Nanobubbles

被引:22
作者
Svetovoy, Vitaly B. [1 ,2 ,3 ,4 ]
Devic, Ivan [1 ,2 ,3 ]
Snoeijer, Jacco H. [1 ,2 ,3 ,5 ]
Lohse, Detlef [1 ,2 ,3 ,6 ]
机构
[1] Univ Twente, Phys Fluids Grp, Dept Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[4] Russian Acad Sci, Inst Phys & Technol, Yaroslavl Branch, Yaroslavl 150007, Russia
[5] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[6] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
关键词
CONTACT ANGLES; LINE TENSION; STABILITY; MODEL;
D O I
10.1021/acs.langmuir.6b01812
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In gas-oversaturated solutions, stable surface nanobubbles can exist thanks to a balance between the Laplace pressure and the gas overpressure, provided the contact line of the bubble is pinned. In this article, we analyze how the disjoining pressure originating from the van der Waals interactions of the liquid and the gas with the surface affects the properties of the surface nanobubbles. From a functional minimization of the Gibbs free energy in the sharp-interface approximation, we find the bubble shape that takes into account the attracting van der Waals potential and gas compressibility effects. Although the bubble shape slightly deviates from the classical one (defined by the Young contact angle), it preserves a nearly spherical-cap shape. We also find that the disjoining pressure restricts the aspect ratio (size/height) of the bubble and derive the maximal possible aspect ratio, which is expressed via the Young angle.
引用
收藏
页码:11188 / 11196
页数:9
相关论文
共 50 条
[31]   Nanobubbles at GPa Pressure under Graphene [J].
Zamborlini, Giovanni ;
Imam, Mighfar ;
Patera, Laerte L. ;
Mentes, Tevfik Onur ;
Stojic, Natasa ;
Africh, Cristina ;
Sala, Alessandro ;
Binggeli, Nadia ;
Comelli, Giovanni ;
Locatelli, Andrea .
NANO LETTERS, 2015, 15 (09) :6162-6169
[32]   Disjoining pressure driven transpiration of water in a simulated tree [J].
Poudel, Sajag ;
Zou, An ;
Maroo, Shalabh C. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 616 :895-902
[33]   Solid-liquid interface disjoining pressure of frozen clay and its effect on water transport [J].
Cheng, Hua ;
Liu, Xiaoyan ;
Chen, Hanqing ;
Wang, Xuesong ;
Guo, Longhui ;
Wang, Xiaoyun .
JOURNAL OF CRYSTAL GROWTH, 2023, 614
[34]   Surface nanobubbles on the carbonate mineral dolomite [J].
Owens, Camilla L. ;
Schach, Edgar ;
Rudolph, Martin ;
Nash, Geoffrey R. .
RSC ADVANCES, 2018, 8 (62) :35448-35452
[35]   The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles [J].
Walczyk, Wiktoria ;
Schoen, Peter M. ;
Schoenherr, Holger .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (18)
[36]   Forced oscillation dynamics of surface nanobubbles [J].
Dockar, Duncan ;
Gibelli, Livio ;
Borg, Matthew K. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (18)
[37]   Enhanced fluctuation for pinned surface nanobubbles [J].
Guo, Zhenjiang ;
Zhang, Xianren .
PHYSICAL REVIEW E, 2019, 100 (05)
[38]   Identifying surface-attached nanobubbles [J].
Tan, Beng Hau ;
An, Hongjie ;
Ohl, Claus-Dieter .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2021, 53
[39]   THE POSSIBILITY OF FORMATION OF SURFACE AND BULK NANOBUBBLES [J].
Koshoridze, S., I ;
Levin, Yu K. .
NANOSCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL, 2019, 10 (01) :67-77
[40]   THERMODYNAMIC ANALYSIS OF NANOBUBBLES ON HYDROPHOBIC SURFACE [J].
Koshoridze, S., I ;
Levin, Yu K. .
RUSSIAN PHYSICS JOURNAL, 2020, 62 (09) :1595-1601