Mixed Discretization of the Time-Domain MFIE at Low Frequencies

被引:6
|
作者
Ulku, H. Arda [1 ,2 ]
Bogaert, Ignace [3 ,4 ]
Cools, Kristof [5 ]
Andriulli, Francesco P. [6 ]
Bagci, Hakan [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Gebze Tech Univ, Dept Elect Engn, TR-41400 Kocaeli, Turkey
[3] Univ Ghent, Dept Informat Technol, B-9000 Ghent, Belgium
[4] ArcelorMittal, B-9042 Ghent, Belgium
[5] Univ Nottingham, Dept Elect & Elect Engn, Nottingham NG7 2RD, England
[6] TELECOM Bretagne, Microwave Dept, F-29238 Brest, France
基金
英国工程与自然科学研究理事会;
关键词
Buffa-Christiansen (BC) functions; low-frequency analysis; magnetic field integral equation (MFIE); marching-on-in-time (MOT) method; mixed discretization; transient analysis; FIELD INTEGRAL-EQUATION; VERY-LOW FREQUENCIES; MAGNETIC-FIELD; PRECONDITIONER; SCATTERING; EFIE;
D O I
10.1109/LAWP.2017.2651045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solution of the magnetic field integral equation, which is obtained by the classical marching-on-in-time (MOT) scheme, becomes inaccurate when the time-step is large, i.e., under low-frequency excitation. It is shown here that the inaccuracy stems from the classical MOT scheme's failure to predict the correct scaling of the current's Helmholtz components for large time-steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring the correct scaling of the current's Helmholtz components under low-frequency excitation.
引用
收藏
页码:1565 / 1568
页数:4
相关论文
共 50 条
  • [21] Using Transfer Function Calculation and Extrapolation to Improve the Efficiency of the Finite-Difference Time-Domain Method at Low Frequencies
    Perrin, Emmanuel
    Guiffaut, Christophe
    Reineix, Alain
    Tristant, Fabrice
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2010, 52 (01) : 173 - 178
  • [22] Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations
    Monteghetti, Florian
    Matignon, Denis
    Piot, Estelle
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 393 - 426
  • [23] An unconditionally stable time-domain discretization on cartesian meshes for the simulation of nonuniform magnetized cold plasma
    Tierens, Wouter
    De Zutter, Daniel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (15) : 5144 - 5156
  • [24] COMPUTATION OF ELECTROMAGNETIC SCATTERING AND RADIATION USING A TIME-DOMAIN FINITE-VOLUME DISCRETIZATION PROCEDURE
    MOHAMMADIAN, AH
    SHANKAR, V
    HALL, WF
    COMPUTER PHYSICS COMMUNICATIONS, 1991, 68 (1-3) : 175 - 196
  • [25] Time-Domain Decomposition for Mixed-Integer Optimal Control Problems
    Falk M. Hante
    Richard Krug
    Martin Schmidt
    Applied Mathematics & Optimization, 2023, 87
  • [26] A time-domain surface integral technique for mixed electromagnetic and circuit simulation
    Yang, CY
    Jandhyala, V
    IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2005, 28 (04): : 745 - 753
  • [27] Unconditionally Stable Time-Domain Mixed Finite-Element Method
    Crawford, Zane D.
    Li, Jie
    Christlieb, Andrew
    Shanker, B.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 1789 - 1790
  • [28] Time-Domain Decomposition for Mixed-Integer Optimal Control Problems
    Hante, Falk M.
    Krug, Richard
    Schmidt, Martin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (03):
  • [29] High-Order Convergence With a Low-Order Discretization of the 2-D MFIE
    Davis, Clayton P.
    Warnick, Karl F.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2004, 3 : 355 - 358
  • [30] TIME-DOMAIN IMAGES
    NUSS, MC
    MORRISON, RL
    OPTICS LETTERS, 1995, 20 (07) : 740 - 742