Mixed Discretization of the Time-Domain MFIE at Low Frequencies

被引:6
|
作者
Ulku, H. Arda [1 ,2 ]
Bogaert, Ignace [3 ,4 ]
Cools, Kristof [5 ]
Andriulli, Francesco P. [6 ]
Bagci, Hakan [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Gebze Tech Univ, Dept Elect Engn, TR-41400 Kocaeli, Turkey
[3] Univ Ghent, Dept Informat Technol, B-9000 Ghent, Belgium
[4] ArcelorMittal, B-9042 Ghent, Belgium
[5] Univ Nottingham, Dept Elect & Elect Engn, Nottingham NG7 2RD, England
[6] TELECOM Bretagne, Microwave Dept, F-29238 Brest, France
基金
英国工程与自然科学研究理事会;
关键词
Buffa-Christiansen (BC) functions; low-frequency analysis; magnetic field integral equation (MFIE); marching-on-in-time (MOT) method; mixed discretization; transient analysis; FIELD INTEGRAL-EQUATION; VERY-LOW FREQUENCIES; MAGNETIC-FIELD; PRECONDITIONER; SCATTERING; EFIE;
D O I
10.1109/LAWP.2017.2651045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solution of the magnetic field integral equation, which is obtained by the classical marching-on-in-time (MOT) scheme, becomes inaccurate when the time-step is large, i.e., under low-frequency excitation. It is shown here that the inaccuracy stems from the classical MOT scheme's failure to predict the correct scaling of the current's Helmholtz components for large time-steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring the correct scaling of the current's Helmholtz components under low-frequency excitation.
引用
收藏
页码:1565 / 1568
页数:4
相关论文
共 50 条
  • [1] Accurate and Conforming Mixed Discretization of the MFIE
    Cools, K.
    Andriulli, F. P.
    De Zutter, D.
    Michielssen, E.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 : 528 - 531
  • [2] Stable Discretization of Time-Domain Solvers
    Roth, Thomas E.
    Chew, Weng C.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 1454 - 1454
  • [3] A Time-Domain Meshless Method Without Discretization in Time
    Wang, Jun-Feng
    Chen, Zhizhang
    Peng, Cheng
    Li, Jinyan
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (06) : 545 - 548
  • [4] Improving the MFIE's Accuracy by Using a Mixed Discretization
    Cools, Kristof
    Andriulli, Francesco P.
    Olyslager, Femke
    Michielssen, Eric
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 2316 - +
  • [5] Time-domain Dirichlet-to-Neumann map and its discretization
    Banjai, Lehel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (03) : 1136 - 1155
  • [6] Two discretization schemes for a time-domain dissipative acoustics problem
    Bermudez, Alfredo
    Rodriguez, Rodolfo
    Santamarina, Duarte
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (10): : 1559 - 1598
  • [7] TIME-DOMAIN ALGORITHM FOR THE ESTIMATION OF 2 SINUSOIDAL FREQUENCIES
    MCCORMICK, WS
    LANSFORD, JL
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1994, 141 (01): : 33 - 38
  • [8] Solution of Time-Domain MFIE and CFIE Using Adaptive MOO Method for Transient Scattering in the Presence of an EMP
    Zhu, Ming-Da
    Zhou, Xi-Lang
    Yin, Wen-Yan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC), 2011, : 585 - 590
  • [9] Inherent uncertainty in the extraction of frequencies from time-domain signals
    O'Higgins, Connor
    Hester, David
    Ao, Wai Kei
    McGetrick, Patrick
    Robinson, Des
    INFRASTRUCTURE ASSET MANAGEMENT, 2021, 8 (03) : 121 - 132
  • [10] On the Mixed Discretization of the Time Domain Magnetic Field Integral Equation
    Uelkue, H. A.
    Bogaert, I.
    Cools, K.
    Andriulli, F. P.
    Bagci, H.
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 817 - 819