The role of microRNAs in skeletal muscle health and disease

被引:54
作者
Kirby, Tyler J. [1 ,2 ]
Chaillou, Thomas [1 ,2 ]
McCarthy, John J. [1 ,2 ]
机构
[1] Univ Kentucky, Ctr Muscle Biol, Lexington, KY 40536 USA
[2] Univ Kentucky, Dept Physiol, Coll Med, Lexington, KY 40536 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2015年 / 20卷
关键词
MyomiR; Exercise; Hypertrophy; Atrophy; Muscular dystrophy; Review; PROMOTES MYOGENIC DIFFERENTIATION; PROGENITOR-CELL PROLIFERATION; DUCHENNE MUSCULAR-DYSTROPHY; ACUTE ENDURANCE EXERCISE; DOWN-REGULATION; MYOBLAST DIFFERENTIATION; TRANSCRIPTION FACTOR; RESISTANCE EXERCISE; INSULIN-RESISTANCE; SATELLITE CELLS;
D O I
10.2741/4298
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of similar to 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.
引用
收藏
页码:37 / 77
页数:41
相关论文
共 50 条
[41]   Tiny Regulators of Massive Tissue: MicroRNAs in Skeletal Muscle Development, Myopathies, and Cancer Cachexia [J].
Singh, Gurinder Bir ;
Cowan, Douglas B. ;
Wang, Da-Zhi .
FRONTIERS IN ONCOLOGY, 2020, 10
[42]   The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease [J].
Lian, Di ;
Chen, Ming-Ming ;
Wu, Hanyu ;
Deng, Shoulong ;
Hu, Xiaoxiang .
ANTIOXIDANTS, 2022, 11 (04)
[43]   Muscling in on mitochondrial sexual dimorphism; role of mitochondrial dimorphism in skeletal muscle health and disease [J].
Nye, Gareth A. ;
Sakellariou, Giorgos K. ;
Degens, Hans ;
Lightfoot, Adam P. .
CLINICAL SCIENCE, 2017, 131 (15) :1919-1922
[44]   Frontier impact of microRNAs in skeletal muscle research: a future perspective [J].
Aoi, Wataru .
FRONTIERS IN PHYSIOLOGY, 2015, 5
[45]   Does regulation of skeletal muscle function involve circulating microRNAs? [J].
Aoi, Wataru ;
Sakuma, Kunihiro .
FRONTIERS IN PHYSIOLOGY, 2014, 5
[46]   Estradiol deficiency and skeletal muscle apoptosis: Possible contribution of microRNAs [J].
Karvinen, Sira ;
Juppi, Hanna-Kaarina ;
Le, Gengyun ;
Cabelka, Christine A. ;
Mader, Tara L. ;
Lowe, Dawn A. ;
Laakkonen, Eija K. .
EXPERIMENTAL GERONTOLOGY, 2021, 147
[47]   MicroRNAs, heart failure, and aging: potential interactions with skeletal muscle [J].
Murach, Kevin A. ;
McCarthy, John J. .
HEART FAILURE REVIEWS, 2017, 22 (02) :209-218
[48]   Human and mouse skeletal muscle stem and progenitor cells in health and disease [J].
Mierzejewski, Bartosz ;
Archacka, Karolina ;
Grabowska, Iwona ;
Florkowska, Anita ;
Ciemerych, Maria Anna ;
Brzoska, Edyta .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2020, 104 :93-104
[49]   Low Response to Aerobic Training in Metabolic Disease: Role of Skeletal Muscle [J].
Soares, Rogerio Nogueira ;
Lessard, Sarah J. .
EXERCISE AND SPORT SCIENCES REVIEWS, 2024, 52 (02) :47-53
[50]   The role of calpain in skeletal muscle [J].
Pandurangan, Muthuraman ;
Hwang, Inho .
ANIMAL CELLS AND SYSTEMS, 2012, 16 (06) :431-437