Heegner cycles and p-adic L-functions

被引:26
作者
Castella, Francesc [1 ]
Hsieh, Ming-Lun [2 ,3 ,4 ]
机构
[1] Princeton Univ, Math Dept, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Natl Ctr Theoret Sci, Taipei, Taiwan
[4] Natl Taiwan Univ, Dept Math, Taipei, Taiwan
关键词
IWASAWA THEORY; REPRESENTATIONS; REDUCTION; HEIGHTS;
D O I
10.1007/s00208-017-1517-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deduce the vanishing of Selmer groups for the Rankin-Selberg convolution of a cusp form with a theta series of higher weight from the nonvanishing of the associated L-value, thus establishing the rank 0 case of the Bloch-Kato conjecture in these cases. Our methods are based on the connection between Heegner cycles and p-adic L-functions, building upon recent work of Bertolini, Darmon and Prasanna, and on an extension of Kolyvagin's method of Euler systems to the anticyclotomic setting. In the course of the proof, we also obtain a higher weight analogue of Mazur's conjecture (as proven in weight 2 by Cornut-Vatsal), and as a consequence of our results, we deduce from Nekovar's work a proof of the parity conjecture in this setting.
引用
收藏
页码:567 / 628
页数:62
相关论文
共 45 条
[21]   PARA-ADIC L-FUNCTIONS FOR CM FIELDS [J].
KATZ, NM .
INVENTIONES MATHEMATICAE, 1978, 49 (03) :199-297
[22]   Rankin-Eisenstein classes in Coleman families [J].
Loeffler, David ;
Zerbes, Sarah Livia .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2016, 3
[23]   Iwasawa theory and p-adic L-functions over Zp2-extensions [J].
Loeffler, David ;
Zerbes, Sarah Livia .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (08) :2045-2095
[24]  
Mazur B., 1984, P INT C MATH PWN WAR, V1, P185
[25]  
Mumford, 2008, ABELIAN VARIETIES
[26]   ON THE P-ADIC HEIGHT OF HEEGNER CYCLES [J].
NEKOVAR, J .
MATHEMATISCHE ANNALEN, 1995, 302 (04) :609-686
[27]   KOLYVAGIN METHOD FOR CHOW GROUPS OF KUGA-SATO VARIETIES [J].
NEKOVAR, J .
INVENTIONES MATHEMATICAE, 1992, 107 (01) :99-125
[28]  
Nekovar J., 2000, CRM Proc. Lecture Notes, V24, P367, DOI DOI 10.1090/CRMP/024/18
[29]  
Nekovár J, 2006, ASTERISQUE, P1
[30]  
Nekovár J, 2007, DOC MATH, V12, P243