Probabilities of randomly centered small balls and quantization in Banach spaces

被引:7
作者
Dereich, S
Lifshits, MA
机构
[1] Tech Univ Berlin, Math Inst, D-10623 Berlin, Germany
[2] St Petersburg State Univ, Stary Peterhof 198504, Russia
关键词
high-resolution quantization; small ball probabilities; small deviations; asymptotic equipartition property;
D O I
10.1214/009117905000000161
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the Gaussian small ball probabilities with random centers, find their deterministic a.s.-equivalents and establish a relation to infinite-dimensional high-resolution quantization.
引用
收藏
页码:1397 / 1421
页数:25
相关论文
共 17 条
[1]  
Bogachev V. I., 1998, Gaussian Measures
[2]   Source coding, large deviations, and approximate pattern matching [J].
Dembo, A ;
Kontoyiannis, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (06) :1590-1615
[3]   Small ball probabilities around random centers of Gaussian measures and applications to quantization [J].
Dereich, S .
JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (02) :427-449
[4]   On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces [J].
Dereich, S ;
Fehringer, F ;
Matoussi, A ;
Scheutzow, M .
JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (01) :249-265
[5]  
DEREICH S, 2003, THESIS TU BERLIN
[6]   METRIC ENTROPY AND THE SMALL BALL PROBLEM FOR GAUSSIAN MEASURES [J].
KUELBS, J ;
LI, WV .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 116 (01) :133-157
[7]  
KUELBS J, 1998, HIGH DIMENSIONAL PRO, V43, P233
[8]  
Kühn T, 2002, BERNOULLI, V8, P669
[9]  
LEDOUX M., 1996, LECT NOTES MATH, V1648, P165, DOI [DOI 10.1007/BFb0095676, 10.1007/BFb0095676, DOI 10.1007/BFB0095676]
[10]  
Li WV, 2001, HANDB STAT, V19, P533, DOI 10.1016/S0169-7161(01)19019-X