Positive periodic solutions for an integrodifferential model of mutualism

被引:23
作者
Li, YK [1 ]
Xu, GT [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
关键词
mutualism model; positive periodic solution; integrodifferential equation; Fredholm mapping;
D O I
10.1016/S0893-9659(00)00188-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sufficient conditions are obtained for the existence of positive periodic solutions of the following integrodifferential model of mutualism: dN(1)(t)/dt = r(1)(t)N-1(t) [K-1(t) + alpha (1)(t) integral (infinity)(0) J(2)(s)N-2(t - s)ds/1 + integral (infinity)(0) J(2)N(2)(t - s)ds - N-1(t - sigma (1)(t))], dN(2)a(t)/dt = r(2)r(t)N-2(t) [K-2(t) + alpha (2)(t) integral (infinity)(0) J(1)(s)N-1(t - s)ds/ 1 + integral (infinity)(0) J(1)(s)N-1(t - s)ds - N-2(t - sigma (2)(t))], where tau (i), K-i, alpha (i), sigma (i), i = 1,2 are positive continuous omega -periodic functions, alpha (i) > K-i, i = 1,2, J(i) is an element of C([0, infinity], [0, infinity]), and integral (infinity)(0) J(i)(s) ds = 1, i = 1, 2. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:525 / 530
页数:6
相关论文
共 7 条
[1]  
Boucher D.H., 1985, The Biology of Mutualism: Ecology and Evolution
[2]   THE ECOLOGY OF MUTUALISM [J].
BOUCHER, DH ;
JAMES, S ;
KEELER, KH .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1982, 13 :315-347
[3]   A SIMPLE-MODEL OF MUTUALISM [J].
DEAN, AM .
AMERICAN NATURALIST, 1983, 121 (03) :409-417
[4]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[5]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[6]   VARIETIES OF MUTUALISTIC INTERACTION IN POPULATION MODELS [J].
VANDERMEER, JH ;
BOUCHER, DH .
JOURNAL OF THEORETICAL BIOLOGY, 1978, 74 (04) :549-558
[7]   MODELS OF FACULTATIVE MUTUALISM - DENSITY EFFECTS [J].
WOLIN, CL ;
LAWLOR, LR .
AMERICAN NATURALIST, 1984, 124 (06) :843-862