Stochastic Generalized Nash Equilibrium-Seeking in Merely Monotone Games

被引:18
作者
Franci, Barbara [1 ]
Grammatico, Sergio [1 ]
机构
[1] Techn Univ Delft, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
关键词
Cost function; Nash equilibrium; Games; Stochastic processes; Random variables; Couplings; Convergence; Stochastic generalized Nash equilibrium problems; stochastic variational inequalities; EXTRAGRADIENT METHODS; APPROXIMATION METHODS; CONSTRAINTS; SCHEMES; SMOOTH;
D O I
10.1109/TAC.2021.3108496
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We solve the stochastic generalized Nash equilibrium (SGNE) problem in merely monotone games with expected value cost functions. Specifically, we present the first distributed SGNE-seeking algorithm for monotone games that require one proximal computation (e.g., one projection step) and one pseudogradient evaluation per iteration. Our main contribution is to extend the relaxed forward-backward operator splitting by the Malitsky (Mathematical Programming, 2019) to the stochastic case and in turn to show almost sure convergence to an SGNE when the expected value of the pseudogradient is approximated by the average over a number of random samples.
引用
收藏
页码:3905 / 3919
页数:15
相关论文
共 49 条
[1]   A Generalized Nash-Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model [J].
Abada, Ibrahim ;
Gabriel, Steven ;
Briat, Vincent ;
Massol, Olivier .
NETWORKS & SPATIAL ECONOMICS, 2013, 13 (01) :1-42
[2]  
[Anonymous], 2018, P 32 INT C NEUR INF
[3]   Lagrangian duality and related multiplier methods for variational inequality problems [J].
Auslender, A ;
Teboulle, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1097-1115
[4]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[5]  
Belgioioso G, 2018, 2018 EUROPEAN CONTROL CONFERENCE (ECC), P2188, DOI 10.23919/ECC.2018.8550342
[6]   Semi-decentralized nash equilibrium seeking in aggregative games with separable coupling constraints and non-differentiable cost functions [J].
Belgioioso, Giuseppe ;
Grammatico, Sergio .
IEEE Control Systems Letters, 2017, 1 (02) :400-405
[7]  
Bot R., 2020, STOCHASTIC SYSTEMS
[8]   Conditions ensuring the applicability of cutting-plane methods for solving variational inequalities [J].
Crouzeix, JP ;
Marcotte, P ;
Zhu, DL .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :521-539
[9]  
Cui S., 2021, SET VALUED VARIATION, V1-47
[10]  
Cui SS, 2016, IEEE DECIS CONTR P, P4510, DOI 10.1109/CDC.2016.7798955